[1] Andersson H, van den Berg A.Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities. Lab Chip. 2004;4(2):98-103 [2] Beauchamp MJ, Nordin GP, Woolley AT. Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices. Anal. Bioanal. Chem.Anal Bioanal Chem. 2017; 409(18):4311-4319.[3] Sun X, Nunes SS. Maturation of Human Stem Cell-derived Cardiomyocytes in Biowires Using Electrical Stimulation. J Vis Exp. 2017;(123). [4] Yeon JH, Na D, Choi K,et al. Reliable permeability assay system in a microfluidic device mimicking cerebral vasculatures. Biomed. Microdevices. Biomed Microdevices. 2012;14(6): 1141-1148.[5] Griep LM, Wolbers F, de Wagenaar B,et al.BBB on chip: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function. Biomed Microdevices. 2013;15(1):145-150.[6] Kim JA, Kim HN, Im SK, Chung S,et al.Collagen-based brain microvasculature model in vitro using three-dimensional printed template. Biomicrofluidics. 2015;9(2):024115.[7] Brown JA, Pensabene V, Markov DA, et al. Recreating blood-brain barrier physiology and structure on chip: A novel neurovascular microfluidic bioreactor.Biomicrofluidics. 2015; 9(5):054124.[8] Herland A, van der Meer AD, FitzGerald EA, et al.Distinct Contributions of Astrocytes and Pericytes to Neuroinflammation Identified in a 3D Human Blood-Brain Barrier on a Chip. PLoS One. 2016;11(3):e0150360.[9] Fox EL,Bowers RW,Foss ML.The physiological basis for exercise and sport.1993.[10] Uehata M, Ishizaki T, Satoh H, et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension.Nature. Nature. 1997;389(6654):990-994.[11] Jacot JG, McCulloch AD, Omens JH. Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys. J. Biophys J. 2008;95(7):3479-3487.[12] Grosberg A, Nesmith AP, Goss JA, et al.Muscle on a chip: in vitro contractility assays for smooth and striated muscle. J Pharmacol Toxicol Methods. 2012 ;65(3):126-135.[13] Ma Z, Liu Q, Liu H, et al. Laser-patterned stem-cell bridges in a cardiac muscle model for on-chip electrical conductivity analyses. Lab Chip. 2012;12(3):566-573.[14] Zhang D, Shadrin IY, Lam J, et al. Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials. 2013;34(23): 5813-5820.[15] Juhas M, Engelmayr GC Jr, Fontanella AN, et al.Biomimetic engineered muscle with capacity for vascular integration and functional maturation in vivo. Proc Natl Acad Sci U S A. 2014; 111(15):5508-5513.[16] Zhang YS, Arneri A, Bersini S, et al.Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials. 2016;110:45-59.[17] Huh D, Matthews BD, Mammoto A, et al.Reconstituting organ-level lung functions on a chip. Science. 2010;328(5986): 1662-1668.[18] Stucki AO, Stucki JD, Hall SR, et al.A lung-on-a-chip array with an integrated bio-inspired respiration mechanism. Lab Chip. 2015;15(5):1302-1310.[19] Blume C, Reale R, Held M, et al.Temporal Monitoring of Differentiated Human Airway Epithelial Cells Using Microfluidics. PLoS One.2015 ;10(10):e0139872.[20] Schilders KA, Eenjes E, van Riet S, et al.Regeneration of the lung: Lung stem cells and the development of lung mimicking devices. Respir Res.2016;17:44. [21] Kniazeva T, Hsiao JC, Charest JL,et al.A microfluidic respiratory assist device with high gas permeance for artificial lung applications. Biomed Microdevices. 2011;13(2):315-323. [22] Hoganson DM, Pryor HI 2nd, Bassett EK, et al.Lung assist device technology with physiologic blood flow developed on a tissue engineered scaffold platform. Lab Chip.2011;11(4): 700-777. [23] Rochow N, Manan A, Wu WI, et al.An integrated array of microfluidic oxygenators as a neonatal lung assist device: in vitro characterization and in vivo demonstration.Artif Organs. 2014;38(10):856-866.[24] Jang KJ, Suh KY. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip. 2010; 10(1):36-42.[25] Jang KJ, Mehr AP, Hamilton GA,et al.Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr Biol (Camb). 2013;5(9):1119-1129. [26] Maschmeyer I, Lorenz AK, Schimek K, et al.A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip. 2015;15(12):2688-2699.[27] Zhou M, Zhang X, Wen X, et al.Development of a Functional Glomerulus at the Organ Level on a Chip to Mimic Hypertensive Nephropathy. Sci Rep. 2016;6:31771.[28] Kane BJ, Zinner MJ, Yarmush ML, et al.Liver-Specific Functional Studies in a Microfluidic Array of Primary Mammalian Hepatocytes. Anal Chem. 2006;78(13):4291-4298.[29] Lee PJ, Hung PJ, Lee LP et al.An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol Bioeng. 2007;97(5):1340-1346.[30] Lee SA, No da Y, Kang E, et al.Spheroid-based three-dimensional liver-on-a-chip to investigate hepatocyte- hepatic stellate cell interactions and flow effects. Lab Chip. 2013;13(18):3529-3537. [31] Bhise NS, Manoharan V, Massa S,et al.A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication. 2016;8(1):014101. [32] Ong LJY, Chong LH, Jin L, et al.A pump-free microfluidic 3D perfusion platform for the efficient differentiation of human hepatocyte-like cells. Biotechnol Bioeng. 2017;114(10): 2360-2370. [33] Banaeiyan AA, Theobald J, Paukštyte J,et al.Design and fabrication of a scalable liver-lobule-on-a-chip microphysiological platform. Biofabrication. 2017 ;9(1):015014.[34] O'Neill AT, Monteiro-Riviere NA, Walker GM,et al.Characterization of microfluidic human epidermal keratinocyte culture. Cytotechnology. 2008;56(3):197-207. [35] Ataç B, Wagner I, Horland R, et al.Skin and hair on-a-chip: in vitro skin models versus ex vivo tissue maintenance with dynamic perfusion. Lab Chip. 2013;13(18):3555-3561. [36] Ilka Wagner, Beren Atac, Gerd Lindner ,et al.Skin and hair-on-a-chip: Hair and skin assembly versus native skin maintenance in a chip-based perfusion system. BMC Proc. 2013;7:P93.[37] Abaci HE,Gledhill K,Guo Z,AM,et al.Pumpless microfluidic platform for drug testing on human skin equivalents. Lab Chip.2015;15(3):882-888. [38] Wufuer M,Lee G,Hur W,et al.Skin-on-a-chip model simulating inflammation, edema and drug-based treatment.Sci Rep.2016; 6:37471. |