中国组织工程研究 ›› 2010, Vol. 14 ›› Issue (39): 7407-7410.doi: 10.3969/j.issn.1673-8225.2010.39.046

• 骨与关节图像与影像 bone and joint imaging • 上一篇    

自适应正则化超分辨率MR图像重建

徐启飞1,张怀国2,王厚军1,王建华1    

  1. 临沂市人民医院,1影像科,2内分泌科,山东省临沂市  276000 
  • 出版日期:2010-09-24 发布日期:2010-09-24
  • 通讯作者: 张怀国,副主任医师,临沂市人民医院内分泌科,山东省临沂市 276000
  • 作者简介:徐启飞★,男,1982年生,山东省苍山县人,汉族,2008年南方医科大学毕业,硕士,技师,主要从事图像后处理方面的研究。

Self-adaptive regularized super-resolution reconstruction of magnetic resonance images

Xu Qi-fei1, Zhang Huai-guo2, Wang Hou-jun1, Wang Jian-hua1   

  1. 1 Department of Imageology, 2 Department of Endocrine, Linyi People’s Hospital, Linyi   276000, Shandong Province, China
  • Online:2010-09-24 Published:2010-09-24
  • Contact: Zhang Huai-guo, Associate chief physician, Department of Endocrine, Linyi People’s Hospital, Linyi 276000, Shandong Province, China
  • About author:Xu Qi-fei★, Master, Technician, Department of Imageology, Linyi People’s Hospital, Linyi 276000, Shandong Province, China xuqifei.2001@163.com

摘要:

背景:超分辨率冲击已经在许多领域展开研究于应用,比如医疗军队,以及视频等。
目的:利用自适应正则化超分辨率重建算法,将低梯度场中获得的具有亚象素位移的图像重建出高分辨率、高信噪比的MR图像。
方法:采用最小二乘法作为代价函数,并求其导数,以获得迭代公式。在迭代过程中自适应的改变正则化参数和步长。
结果与结论:新正则化参数使得代价函数在定义域内具有凸性,同时先验信息被包含于正则化参数中,以提高图像的高频成分。文章提供了低分辨率的体模图像及重建后的MR图像

关键词: 自适应, MR图像, 超分辨率重建, 迭代, 正则化参数

Abstract:

BACKGROUND: Super-resolution reconstruction has been extensively studied and used in many fields, such as medical diagnostics, military surveillance, frame freeze in video, and remote sensing.
OBJECTIVE: In order to obtain high-resolution magnetic resonance images, gradient magnetic field is required and the signal-to-noise will be reduced due to the decrease in voxel size with traditional scan. The present study used a self-adaptive regularized super-resolution reconstruction algorithm to acquire high-resolution magnetic resonance images from four half-pixel-shifted low resolution images.
METHODS: The least squares algorithm was used as a cost function. The derivative of the cost function was calculated to obtain an iterative formula of super-resolution reconstruction. In the process of iterative process, the parameter and step size of image resolution were regularized.
RESULTS AND CONCLUSION: The new regularization parameter makes cost function of the new algorithm convex within the definition region. The piori information is involved in the regularization parameter that can improve the high-frequency components of the restored image. As shown from the results obtained in the phantom imaging, the proposed super-resolution technique can improve the resolution of magnetic resonance image.

中图分类号: