[1] SARKAR SK, LEE BT. Hard tissue regeneration using bone substitutes: an update on innovations in materials. Korean J Intern Med. 2015; 30(3):279-293.
[2] 熊伟,袁灵梅,钱国文,等. “补肾壮骨”中药应用于骨组织工程支架修复节段性骨缺损[J].中国组织工程研究,2023,27(21):3438-3444.
[3] GORDILLO GM, SEN CK. Revisiting the essential role of oxygen in wound healing. Am J Surg. 2003;186(3):259-263.
[4] FOLCO EJ, SUKHOVA GK, QUILLARD T, et al. Moderate hypoxia potentiates interleukin-1β production in activated human macrophages. Circ Res. 2014;115(10):875-883.
[5] HU Z, WANG F, WU Z, et al. FOXO3a-dependent up-regulation of Mxi1-0 promotes hypoxia-induced apoptosis in endothelial cells. Cell Signal. 2018;51:233-242.
[6] 武成,郑伟伟,杨民.氧环境对成骨细胞活性的影响[J].中华医学杂志,2017,97(3):217-222.
[7] XUE JF, SHI ZM, ZOU J, et al. Inhibition of PI3K/AKT/mTOR signaling pathway promotes autophagy of articular chondrocytes and attenuates inflammatory response in rats with osteoarthritis. Biomed Pharmacother. 2017;89:1252-1261.
[8] MIRICESCU D, BALAN DG, TULIN A, et al. PI3K/AKT/mTOR signalling pathway involvement in renal cell carcinoma pathogenesis (Review). Exp Ther Med. 2021;21(5):540.
[9] DING X, LI W, CHEN D, et al. Asperosaponin VI stimulates osteogenic differentiation of rat adipose-derived stem cells. Regen Ther. 2019; 11:17-24.
[10] GU M, JIN J, REN C, et al. Akebia Saponin D suppresses inflammation in chondrocytes via the NRF2/HO-1/NF-κB axis and ameliorates osteoarthritis in mice. Food Funct. 2020;11(12):10852-10863.
[11] VIOZZI CF. Maxillofacial and Mandibular Fractures in Sports. Clin Sports Med. 2017;36(2):355-368.
[12] HO-SHUI-LING A, BOLANDER J, RUSTOM LE, et al. Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018;180:143-162.
[13] LIU J, RUAN J, WEIR MD, et al. Periodontal Bone-Ligament-Cementum Regeneration via Scaffolds and Stem Cells. Cells. 2019;8(6):537.
[14] MOSIER KM. Lesions of the Jaw. Semin Ultrasound CT MR. 2015;36(5): 444-450.
[15] ZHANG Q, WU W, QIAN C, et al. Advanced biomaterials for repairing and reconstruction of mandibular defects. Mater Sci Eng C Mater Biol Appl. 2019;103:109858.
[16] 申琳,王杰,徐桂军,等.应用支架植入递送局部药物在治疗骨质疏松骨缺损的研究进展[J].中国中西医结合外科杂志,2023, 29(3):403-406.
[17] SCARPA ES, ANTONELLI A, BALERCIA G, et al. Antioxidant, Anti-Inflammatory, Anti-Diabetic, and Pro-Osteogenic Activities of Polyphenols for the Treatment of Two Different Chronic Diseases: Type 2 Diabetes Mellitus and Osteoporosis. Biomolecules. 2024;14(7):836.
[18] YU Y, FU D, ZHOU H, et al. Potential application of Atractylodes macrocephala Koidz. as a natural drug for bone mass regulation: A review. J Ethnopharmacol. 2023;315:116718.
[19] GIORDANI C, MATACCHIONE G, GIULIANI A, et al. Pro-Osteogenic and Anti-Inflammatory Synergistic Effect of Orthosilicic Acid, Vitamin K2, Curcumin, Polydatin and Quercetin Combination in Young and Senescent Bone Marrow-Derived Mesenchymal Stromal Cells. Int J Mol Sci. 2023;24(10):8820.
[20] GUPTA A, MEHTA SK, KUMAR A, et al. Advent of phytobiologics and nano-interventions for bone remodeling: a comprehensive review. Crit Rev Biotechnol. 2023;43(1):142-169.
[21] WOJDASIEWICZ P, BRODACKI S, CIEŚLICKA E, et al. Salidroside: A Promising Agent in Bone Metabolism Modulation. Nutrients. 2024; 16(15):2387.
[22] HUANG J, YUAN L, WANG X, et al. Icaritin and its glycosides enhance osteoblastic, but suppress osteoclastic, differentiation and activity in vitro. Life Sci. 2007;81(10):832-840.
[23] GAO ZR, FENG YZ, ZHAO YQ, et al. Traditional Chinese medicine promotes bone regeneration in bone tissue engineering. Chin Med. 2022;17(1):86.
[24] 杨斌,王楠,谭睿,等.中药及其单体对骨髓间充质干细胞诱导分化的研究进展[J].中草药,2022,53(24):7915-7924.
[25] TAO Y, CHEN L, YAN J. Traditional uses, processing methods, phytochemistry, pharmacology and quality control of Dipsacus asper Wall. ex C.B. Clarke: A review. J Ethnopharmacol. 2020;258:112912.
[26] 黄媛,徐艳,易学良,等.川续断皂苷Ⅵ通过JNK信号通路促进骨髓间充质干细胞成骨分化 [J].广州中医药大学学报, 2018, 35(5): 887-893.
[27] NIU Y, LI Y, HUANG H, et al. Asperosaponin VI, a saponin component from Dipsacus asper wall, induces osteoblast differentiation through bone morphogenetic protein-2/p38 and extracellular signal-regulated kinase 1/2 pathway. Phytother Res. 2011;25(11):1700-1706.
[28] WANG CG, LOU YT, TONG MJ, et al. Asperosaponin VI promotes angiogenesis and accelerates wound healing in rats via up-regulating HIF-1α/VEGF signaling. Acta Pharmacol Sin. 2018;39(3):393-404.
[29] LIU J, PEI C, JIA N, et al. Preconditioning with Ginsenoside Rg3 mitigates cardiac injury induced by high-altitude hypobaric hypoxia exposure in mice by suppressing ferroptosis through inhibition of the RhoA/ROCK signaling pathway. J Ethnopharmacol. 2025;337(Pt 2):118861.
[30] CHEN R, SONG C, QIU J, et al. Exploring the potential mechanism of Taohong Siwu decoction in the treatment of avascular necrosis of the femoral head based on network pharmacology and molecular docking. Medicine (Baltimore). 2023;102(50):e35312.
[31] HAN J, CHAI Y, ZHANG XY, et al. Gujiansan Ameliorates Avascular Necrosis of the Femoral Head by Regulating Autophagy via the HIF-1α/BNIP3 Pathway. Evid Based Complement Alternat Med. 2021; 2021:6683007.
[32] MA L, LIU X, ZHANG M, et al. Paeoniflorin alleviates ischemia/reperfusion induced acute kidney injury by inhibiting Slc7a11-mediated ferroptosis. Int Immunopharmacol. 2023;116:109754.
[33] SEN CK. Wound healing essentials: let there be oxygen. Wound Repair Regen. 2009;17(1):1-18.
[34] PRABHAKAR NR, KUMAR GK, NANDURI J, et al. ROS signaling in systemic and cellular responses to chronic intermittent hypoxia. Antioxid Redox Signal. 2007;9(9):1397-1403.
[35] MALDA J, KLEIN TJ, UPTON Z. The roles of hypoxia in the in vitro engineering of tissues. Tissue Eng. 2007;13(9):2153-2162.
[36] CAMACHO-CARDENOSA M, CAMACHO-CARDENOSA A, TIMÓN R, et al. Can Hypoxic Conditioning Improve Bone Metabolism? A Systematic Review. Int J Environ Res Public Health. 2019;16(10):1799.
[37] YANG X, LIANG J, SHU Y, et al. Asperosaponin VI facilitates the regeneration of skeletal muscle injury by suppressing GSK-3β-mediated cell apoptosis. J Cell Biochem. 2024;125(1):115-126.
[38] LIU K, LIU Y, XU Y, et al. Asperosaponin VI protects against bone destructions in collagen induced arthritis by inhibiting osteoclastogenesis. Phytomedicine. 2019;63:153006.
[39] FRUMAN DA, CHIU H, HOPKINS BD, et al. The PI3K Pathway in Human Disease. Cell. 2017;170(4):605-635.
[40] MANNING BD, TOKER A. AKT/PKB Signaling: Navigating the Network. Cell. 2017;169(3):381-405.
[41] ZHANG Z, YAO L, YANG J, et al. PI3K/Akt and HIF‑1 signaling pathway in hypoxia‑ischemia (Review). Mol Med Rep. 2018;18(4):3547-3554.
[42] 田启会,张亮,龙亚丽.黄芪影响缺氧微环境中骨髓间充质干细胞增殖活性的PI3K-AKT信号通路分析[J].畜牧兽医学报,2024,55(1): 346-354.
[43] 宋晨阳,孟庆良.基于PI3K/AKT信号通路探讨补肾壮骨汤对骨关节炎防治作用的实验研究[J].陕西中医,2024,45(10):1311-1314+1319.
[44] ZHANG LY, ZHANG K, ZHAO X, et al. Fetal hypoxia exposure induces Hif1a activation and autophagy in adult ovarian granulosa cells†. Biol Reprod. 2024;111(6):1220-1234.
[45] KRATCHMAROVA I, BLAGOEV B, HAACK-SORENSEN M, et al. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science. 2005;308(5727):1472-1477. |