中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (28): 5957-5967.doi: 10.12307/2025.485

• 组织工程骨材料 tissue-engineered bone • 上一篇    下一篇

生物矿物用于制备骨组织工程支架的工艺及性能

刚芳莉,党中秀,李瑞芸,李  潇,孙潇洋   

  1. 忻州师范学院生物系,山西省忻州市   034000
  • 收稿日期:2024-06-12 接受日期:2024-08-14 出版日期:2025-10-08 发布日期:2024-12-07
  • 通讯作者: 刚芳莉,博士,副教授,忻州师范学院生物系,山西省忻州市 034000
  • 作者简介:刚芳莉,女,1990年生,甘肃省陇南市人,汉族,博士,副教授,主要从事生物医用材料方面的研究。
  • 基金资助:
    山西省基础研究计划青年科学研究项目(20210302124286),项目负责人:刚芳莉

Techniques and performance of biominerals for fabricating bone tissue engineering scaffolds

Gang Fangli, Dang Zhongxiu, Li Ruiyun, Li Xiao, Sun Xiaoyang   

  1. Department of Biology, Xinzhou Normal University, Xinzhou 034000, Shanxi Province, China
  • Received:2024-06-12 Accepted:2024-08-14 Online:2025-10-08 Published:2024-12-07
  • Contact: Gang Fangli, PhD, Associate professor, Department of Biology, Xinzhou Normal University, Xinzhou 034000, Shanxi Province, China
  • About author:Gang Fangli, PhD, Associate professor, Department of Biology, Xinzhou Normal University, Xinzhou 034000, Shanxi Province, China
  • Supported by:
    Youth Science Project of Shanxi Applied Basic Research Plan, No. 20210302124286 (to GFL)

摘要:


文题释义:

生物矿物:是由生物体生成或参与形成的矿物质。生物矿物在生物体内或通过生物体的代谢活动形成,通常具有独特的物理和化学性质。常见的生物矿物包括贝壳、珍珠、蛋壳和骨骼等。
骨组织工程:是一门结合了生物学、材料科学和工程学原理与技术的前沿学科,通过模拟自然骨组织的结构和功能,促进细胞附着、增殖和分化,从而实现缺损的有效修复再生。骨组织工程的主要研究内容包括支架材料的设计与优化、细胞源的选择与培养以及体内外生物反应器的开发和应用。


背景:近年来,生物矿物用于骨组织工程支架制备的方法得到了广泛研究,包括溶剂铸造法、冷冻干燥法、3D打印等,然而,生物矿物种类多样、成分复杂,对支架性能的影响和制备工艺的要求各不相同,尚需对其适用性进行系统研究。

目的:探索生物矿物的研磨及筛选工艺,评价生物矿物与高分子基体复合材料的溶液流变特性、亲水性、力学性能和生物相容性。
方法:选取5种具有代表性的生物矿物,分别为鳖甲、蛋壳、海螵蛸、鹿角霜和珍珠,将5种生物矿物研磨成粉并筛选,按照特定比例分别与聚己内酯混合制备成复合材料。通过对粉末的元素成分、粒径分布以及复合材料的溶液流变特性、亲水性、力学性能和生物相容性进行测试,探究生物矿物在骨组织工程中应用的可行性。

结果与结论:①大多数生物矿物粉末遵循研磨时间越长粒径越小的规律,通过过筛等方法可以分离获取所需粒度范围内的生物矿物颗粒。元素面扫和傅里叶红外光谱分析表明,这5种生物矿物的主要无机矿物成分为碳酸钙和磷酸钙,都含有C、O、P、Ca 4种元素。②使用1,4-二氧六环溶解聚己内酯并添加生物矿物粉末制备支架的方法,不会导致复合材料成分上发生显著变化,并且不会降低复合材料的生物相容性。生物矿物粉末的加入能够改善聚己内酯材料的亲水性和可3D打印性,但会导致复合材料力学性能的下降。③结果表明,将生物矿物粉末应用于骨组织工程支架时应注意粉末添加比例的选择,以平衡复合材料的亲水性、可打印性和力学性能。

https://orcid.org/0000-0002-1507-2539 (刚芳莉) 

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料;口腔生物材料;纳米材料;缓释材料;材料相容性;组织工程

关键词: 再生医学, 组织工程支架, 生物矿物, 聚己内酯, 亲水性, 细胞相容性, 力学性能, 工程化骨材料

Abstract: BACKGROUND: In recent years, methods for incorporating biominerals into bone tissue engineering scaffolds have been extensively studied, including solvent casting, freeze-drying, and 3D printing. However, the diverse types and complex compositions of biominerals lead to varying impacts on scaffold performance and differing requirements for fabrication processes, necessitating systematic research on their applicability.
OBJECTIVE: To explore biomineral grinding and screening processes, and evaluate their solution rheological properties, hydrophilicity, mechanical properties, and biocompatibility when prepared as composite materials with polymer materials. 
METHODS: Five representative biominerals were selected, including turtle shell, eggshell, cuttlebone, deer antler, and pearl. These were ground into powders and screened, then mixed with polycaprolactone in specific proportions to prepare composite materials. The feasibility of applying biominerals in bone tissue engineering was explored by testing the elemental composition and particle size distribution of the powder, as well as the solution rheological properties, hydrophilicity, mechanical properties, and biocompatibility of the composite material.
RESULTS AND CONCLUSION: (1) Most biomineral powders followed the rule that the longer the grinding time, the smaller the particle size. The desired particle size range could be obtained through methods such as sieving. Elemental mapping and Fourier Transform Infrared spectroscopy analyses indicated that the main inorganic mineral components of these five biominerals were calcium carbonate and calcium phosphate, containing the elements C, O, P, and Ca. (2) The method of dissolving polycaprolactone in 1,4-dioxane and adding biomineral powders to prepare scaffolds did not significantly alter the composite material composition and did not reduce biocompatibility. The addition of biomineral powders improved the hydrophilicity and 3D printability of polycaprolactone materials but decreased their mechanical properties. (3) These findings suggest that when applying biomineral powders to bone tissue engineering scaffolds, the proportion of powder added should be carefully chosen to balance hydrophilicity, printability, and mechanical properties. 

Key words: regenerative medicine, tissue engineering scaffold, biomineral, polycaprolactone, hydrophilicity, cytocompatibility, mechanical property, engineered bone material

中图分类号: