中国组织工程研究 ›› 2025, Vol. 29 ›› Issue (11): 2402-2410.doi: 10.12307/2025.332

• 组织构建相关数据分析 Date analysis of organization construction • 上一篇    下一篇

机器学习识别激素性股骨头坏死中线粒体自噬诊断标志物及免疫浸润分析

黄柯琪,陈跃平,陈尚桐,李加根   

  1. 广西中医药大学附属瑞康医院,广西壮族自治区南宁市  530000
  • 收稿日期:2024-03-14 接受日期:2024-05-06 出版日期:2025-04-18 发布日期:2024-08-13
  • 通讯作者: 陈跃平,博士,主任医师,博士生导师,广西中医药大学附属瑞康医院创伤骨科与手外科,广西壮族自治区南宁市 530000
  • 作者简介:黄柯琪,男,1998年生,广西壮族自治区河池市人,壮族,广西中医药大学在读硕士,主要从事脊柱、骨关节创伤性疾病的防治研究。
  • 基金资助:
    国家自然科学基金资助项目(81960803),项目负责人:陈跃平;广西壮族自治区医疗卫生临床重点学科急诊医学科项目(项目文号:桂卫医发{2021}17号),项目负责人:陈跃平;广西临床重点专科(创伤外科)建设项目(项目文号:桂卫医发{2021}8号),项目负责人:陈跃平;桂派中医药传承创新团队项目(2022A004),项目负责人:陈跃平

Machine learning identification of mitochondrial autophagy diagnostic biomarkers and immune infiltration analysis in steroid-induced osteonecrosis of the femoral head

Huang Keqi, Chen Yueping, Chen Shangtong, Li Jiagen   

  1. Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530000, Guangxi Zhuang Autonomous Region, China
  • Received:2024-03-14 Accepted:2024-05-06 Online:2025-04-18 Published:2024-08-13
  • Contact: Chen Yueping, PhD, Chief physician, Doctoral supervisor, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530000, Guangxi Zhuang Autonomous Region, China
  • About author:Huang Keqi, Master candidate, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530000, Guangxi Zhuang Autonomous Region, China
  • Supported by:
    National Natural Science Foundation of China, No. 81960803 (to CYP); Guangxi Zhuang Autonomous Region Healthcare Clinical Key Discipline of Emergency Medicine Project, No. {2021}17 (to CYP); Guangxi Clinical Key Specialty (Trauma Surgery) Construction Project, No. {2021}8 (to CYP); Gui’s Traditional Chinese Medicine Heritage Innovation Team Project, No. 2022A004 (to CYP) 

摘要:


文题释义:
激素性股骨头坏死:是由长期服用糖皮质激素类药物导致的股骨头慢性缺血,引起骨组织结构疏松,进而发展至股骨头进行性塌陷和关节破坏。
线粒体自噬:是通过特异性清除细胞质中功能失调的线粒体,从而维持线粒体功能的完整性和细胞稳态的选择性自噬。在外界各种刺激的作用下会导致线粒体DNA突变逐渐累积,为了维持线粒体和细胞稳态,损伤的线粒体被特异性包裹进自噬体中并与溶酶体融合,从而完成溶酶体的降解,这个过程称为线粒体自噬。

背景:线粒体自噬和激素性股骨头坏死的发生、发展关系密切,但具体生物标志物及调控机制尚未明确。
目的:通过机器学习算法识别激素性股骨头坏死中线粒体自噬的关键标志物及免疫浸润分析。
方法:从GEO数据库下载股骨头坏死数据集GSE123568和GSE74089,分别作为训练集和验证集,在激素性股骨头坏死组和对照组之间选择差异表达基因,进行加权共表达分析。从MitoCarta 3.0数据库下载线粒体自噬相关基因,然后与差异基因和模块基因取交集。利用两种机器学习算法鉴定激素性股骨头坏死线粒体自噬关键基因,利用外部验证集进行验证。采用CIBERSORT和免疫浸润分析免疫细胞占比,单样本基因集富集分析线粒体自噬基因与免疫细胞的相关性分析。
结果与结论:①差异分析共获得1 163个差异基因,其中有663个上调基因和500个下调基因;加权共表达分析鉴定出4个相关模块,共1 412
个模块基因;②最终与线粒体自噬基因取交集初步筛选出39个交叉基因可能是疾病相关线粒体自噬基因;GO富集分析结果显示,生物过程主要涉及血红素代谢、线粒体运输、核苷酸双磷酸代谢和硫酯代谢过程,细胞组分主要涉及线粒体基质、线粒体外膜、细胞器外膜和线粒体内膜,分子功能主要涉及脂肪酸连接酶活性、铁-硫簇结合和辅酶A连接酶活性;KEGG富集分析结果共映射出6条通路,主要涉及脂肪酸降解、线粒体自噬、丁酸代谢、脂肪酸生物合成和辅因子生物合成;③经LASSO回归和随机森林算法分析最终得到4个核心基因(ALDH5A1、FBXL4、MCL1和STOM),4个核心基因和诊断列线图外部验证集的受试者工作特征曲线均大于0.9;④激素性股骨头坏死发生发展与活化的树突状细胞、骨髓来源的抑制性细胞、调节性T细胞和中心记忆CD8T细胞等免疫细胞有关;⑤结果显示,4个关键的线粒体自噬基因ALDH5A1、FBXL4、MCL1和STOM通过破骨细胞分化和免疫机制在激素性股骨头坏死进展中发挥关键作用,均具有较好的疾病预测效果,可能作为激素性股骨头坏死诊断和治疗的生物标志物。
https://orcid.org/0009-0006-5748-6947(黄柯琪);https://orcid.org/0000-0003-3860-1568(陈跃平)

中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程

关键词: 激素性股骨头坏死, 线粒体自噬, 机器学习, 免疫细胞浸润, 关键标志物

Abstract: BACKGROUND: Mitochondrial autophagy is closely related to the occurrence and development of steroid-induced osteonecrosis of the femoral head (SONFH), but specific biomarkers and regulatory mechanisms remain unclear.
OBJECTIVE: To identify the key biomarkers of mitochondrial autophagy in steroid-induced osteonecrosis of the femoral head using machine learning algorithms and to conduct an immune infiltration analysis.
METHODS: The SONFH datasets GSE123568 and GSE74089 were downloaded from the GEO database, serving as the training and validation sets, respectively. Differentially expressed genes between SONFH and control groups were selected, and weighted gene co-expression network analysis was performed. Mitochondrial autophagy-related genes were obtained from MitoCarta3.0 and intersected with differentially expressed genes and module genes. Two machine learning algorithms were utilized to identify key genes of SONFH mitochondrial autophagy, and validated using an external validation set. CIBERSORT and immune infiltration analysis were employed to assess the proportion of immune cells, and ssGSEA was used to analyze the correlation between mitochondrial autophagy genes and immune cells.
RESULTS AND CONCLUSION: Differential analysis identified a total of 1 163 differentially expressed genes, including 663 upregulated genes and 500 downregulated genes. Weighted gene co-expression network analysis identified 4 key modules, comprising 1 412 module genes. Intersection with mitochondrial autophagy genes yielded 39 intersecting genes as disease-related mitochondrial autophagy genes. Gene ontology enrichment analysis showed that the biological processes were mainly related to heme metabolism, mitochondrial transport, nucleotide bisphosphate metabolism and thioester metabolism, and the cellular components were mainly related to mitochondrial matrix, mitochondrial outer membrane, organelle outer membrane and mitochondrial inner membrane, and the molecular functions were mainly related to fatty acid ligase activity, iron-sulfur cluster binding, and cofactor A ligase activity. Kyoto Encyclopedia of Genes and Genomes enrichment analysis mapped out a total of six pathways, which were mainly related to fatty acid degradation, mitochondrial autophagy, butyric acid metabolism, fatty acid biosynthesis and cofactor biosynthesis. Through LASSO regression and RFE-SVM algorithm analysis, four intersecting genes (ALDH5A1, FBXL4, MCL1, and STOM) were identified. The receiver operating characteristic curves of the four core genes and the diagnostic column chart validation set were all greater than 0.9. The occurrence and development of SONFH were related to immune cells such as dendritic cells, bone marrow-derived suppressor cells, regulatory T cells, and central memory CD8 T cells. To conclude, the four key mitochondrial autophagy genes ALDH5A1, FBXL4, MCL1, and STOM play a crucial role in the progression of SONFH through osteoclast differentiation and immune mechanisms. Additionally, all four genes have good disease prediction efficacy and can serve as biomarkers for the diagnosis and treatment of SONFH.

中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程

Key words: steroid-induced osteonecrosis of the femoral head, mitophagy, machine learning algorithms, immune cell infiltration, key marker

中图分类号: