[1] DAUERMAN HL, IBANEZ B. The edge of time in acute myocardial infarction. J Am Coll Cardiol. 2021;77(15):1871-1874.
[2] FRANTZ S, HUNDERTMARK MJ, SCHULZ-MENGER J, et al. Left ventricular remodelling post-myocardial infarction: pathophysiology, imaging, and novel therapies. Eur Heart J. 2022;43(27):2549-2561.
[3] CUDDY TF, RAMOS JS, DALLECK LC. Reduced Exertion High-Intensity Interval Training is More Effective at Improving Cardiorespiratory Fitness and Cardiometabolic Health than Traditional Moderate-Intensity Continuous Training. Int J Environ Res Public Health. 2019;16(3):e483.
[4] OIKONOMOU E, SIASOS G, TSIGKOU V, et al. Coronary artery disease and endothelial dysfunction: novel diagnostic and therapeutic approaches. Curr Med Chem. 2020;27(7):1052-1080.
[5] HUGHES CW, COHEN A. The repair of injured blood vessels. Surg Clin North Am. 1958;38(6):1529-1543.
[6] DIPIETRO LA. Angiogenesis and wound repair: when enough is enough. J Leukoc Biol. 2016;100(5):979-984.
[7] YANG JX, PAN YY, WANG XX, et al. Endothelial progenitor cells in age-related vascular remodeling. Cell Transplant. 2018;27(5):786-795.
[8] AICHER A, ZEIHER AM, DIMMELER S. Mobilizing endothelial progenitor cells. Hypertension. 2005;45(3):321-325.
[9] CHEN L, TANG S, ZHANG FF, et al. Cyp4a/20-HETE regulates ischemia-induced neovascularization via its actions on endothelial progenitor and preexisting endothelial cells. Am J Physiol Heart Circ Physiol. 2019;316(6):H1468-H1479.
[10] SHINTANI S, MUROHARA T, IKEDA H, et al. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation. 2001;103(23):2776-2779.
[11] VASA M, FICHTLSCHERER S, AICHER A, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001;89(1):E1-7.
[12] CUADRADO-GODIA E, REGUEIRO A, NÚÑEZ J, et al. Endothelial progenitor cells predict cardiovascular events after atherothrombotic stroke and acute myocardial infarction. A PROCELL substudy. PLoS One. 2015;10(9):e0132415.
[13] DIBBEN GO, FAULKNER J, OLDRIDGE N, et al. Exercise-based cardiac rehabilitation for coronary heart disease: a meta-analysis. Eur Heart J. 2023;44(6):452-469.
[14] ZHANG YM, LU Y, TANG Y, et al. The effects of different initiation time of exercise training on left ventricular remodeling and cardiopulmonary rehabilitation in patients with left ventricular dysfunction after myocardial infarction. Disabil Rehabil. 2016;38(3):268-276.
[15] MORAES-SILVA IC, RODRIGUES B, COELHO-JUNIOR HJ, et al. Myocardial infarction and exercise training: evidence from basic science. Adv Exp Med Biol. 2017;999:139-153.
[16] VAN CRAENENBROECK EM, BRUYNDONCKX L, VAN BERCKELAER C, et al. The effect of acute exercise on endothelial progenitor cells is attenuated in chronic heart failure. Eur J Appl Physiol. 2011;111(9): 2375-2379.
[17] 中华医学会心血管病学分会预防学组,中国康复医学会心血管病专业委员会.冠心病患者运动治疗中国专家共识[J].中华心血管病杂志,2015,43(7):575-588.
[18] 中华医学会心血管病学分会介入心脏病学组,中国医师协会心血管内科医师分会血栓防治专业委员会,中华心血管病杂志编辑委员会.中国经皮冠状动脉介入治疗指南(2016)[J].中华心血管病杂志,2016,44(5):382-400.
[19] 郅季炘,高永成,马刚.改良高强度间歇运动在冠状动脉疾病患者心脏康复中的应用研究[J].中华物理医学与康复杂志,2023,45(1): 42-47.
[20] 王玉燕,铁虎光,金丽山,等.冠心病病人外周血单个核细胞aim2表达水平及其与炎性因子的相关性[J].中西医结合心脑血管病杂志,2022,20(14):2585-2588.
[21] 吴鸿涛,马艳,毕晓娟,等.人外周血与脐血内皮祖细胞生物学特性的比较[J].中国组织工程研究,2013,17(45):7911-7917.
[22] 陈菊明,左琦,宋艳玲,等.氯沙坦对慢性心力衰竭患者外周血内皮祖细胞的影响研究[J].实用心脑肺血管病杂志,2017,25(8):41-44.
[23] 刘一炫,赵雅红,谢富兰,等.冠心病患者与健康人群外周血中内皮祖细胞微小rna表达[J].中国老年学杂志,2021,41(21):4792-4794.
[24] GIANNUZZI P, TEMPORELLI PL, CORRÀ U, et al. Attenuation of unfavorable remodeling by exercise training in postinfarction patients with left ventricular dysfunction: results of the exercise in left ventricular dysfunction (elvd) trial. Circulation. 1997;96(6):1790-1797.
[25] ADDOH O, EDWARDS MK, LOPRINZI PD. Considerations for the inclusion of cardiorespiratory fitness as a vital sign in the clinical setting. Prev Med. 2017;96:85-86.
[26] KHAN H, KUNUTSOR SK, RAURAMAA R, et al. Long-Term Change in Cardiorespiratory Fitness in Relation to Atrial Fibrillation and Heart Failure (from the Kuopio Ischemic Heart Disease Risk Factor Study). Am J Cardiol. 2018;121(8):956-960.
[27] DAVIDSON T, VAINSHELBOIM B, KOKKINOS P, et al. Cardiorespiratory fitness versus physical activity as predictors of all-cause mortality in men. Am Heart J. 2018;196:156-162.
[28] ROSS R, BLAIR SN, ARENA R, et al. Importance of assessing cardiorespiratory fitness in clinical practice: A case for fitness as a clinical vital sign: A scientific statement from the american heart association. Circulation. 2016;134(24):e653-699.
[29] LAUFS U, WERNER N, LINK A, et al. Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation. 2004;109(2):220-226.
[30] VASA M, FICHTLSCHERER S, ADLER K, et al. Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation. 2001;103(24):2885-2890.
[31] KALKA C, TEHRANI H, LAUDENBERG B, et al. VEGF gene transfer mobilizes endothelial progenitor cells in patients with inoperable coronary disease. Ann Thorac Surg. 2000;70(3):829-834.
[32] HARB IA, ASHOUR H, SABRY D, et al. Nicorandil prevents the nephrotoxic effect of cyclosporine-A in albino rats through modulation of hif-1α/vegf/eNOS signaling. Can J Physiol Pharmacol. 2021;99(4): 411-417.
[33] ZUO K, ZHI K, ZHANG X, et al. A dysregulated microrna-26a/epha2 axis impairs endothelial progenitor cell function via the p38 mapk/VEGF pathway. Cell Physiol Biochem. 2015;35(2):477-488.
[34] JING J, JIANG H, ZHANG L. Endothelial progenitor cells promote neural stem cell proliferation in hypoxic conditions through VEGF via the pi3k/AKT pathway. J Recept Signal Transduct Res. 2022;42(5):479-485.
[35] ZHOU J, LI H, XUN L, et al. Hyperlipidemia attenuates the mobilization of endothelial progenitor cells induced by acute myocardial ischemia via vegf/enos/no/mmp-9 pathway. Aging (Albany NY). 2022;14(19): 7877-7889.
[36] STANISIC J, KORICANAC G, KOSTIC M, et al. Low-intensity exercise in the prevention of cardiac insulin resistance-related inflammation and disturbances in NOS and mmp-9 regulation in fructose-fed ovariectomized rats. Appl Physiol Nutr Metab. 2019;44(11):1219-1229.
[37] SUN X, HUANG LY, PAN HX, et al. Bone marrow mesenchymal stem cells and exercise restore motor function following spinal cord injury by activating pi3k/akt/mTOR pathway. Neural Regen Res. 2023;18(5): 1067-1075.
[38] WANG Y, CHEN L, ZHANG M, et al. Exercise-induced endothelial mecp2 lactylation suppresses atherosclerosis via the ereg/MAPK signalling pathway. Atherosclerosis. 2023;375:45-58.
[39] SCHUH A, KROH A, KONSCHALLA S, et al. Myocardial regeneration by transplantation of modified endothelial progenitor cells expressing SDF-1 in a rat model. J Cell Mol Med. 2012;16(10):2311-2320.
[40] YAMAGUCHI J, KUSANO KF, MASUO O, et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation. 2003;107(9):1322-1328.
[41] ASKARI AT, UNZEK S, POPOVIC ZB, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet. 2003;362(9385):697-703.
[42] URBICH C, DIMMELER S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res. 2004;95(4):343-353.
[43] CHANG E, PATERNO J, DUSCHER D, et al. Exercise induces stromal cell-derived factor-1α-mediated release of endothelial progenitor cells with increased vasculogenic function. Plast Reconstr Surg. 2015;135(2): e340-e350.
[44] PALMEFORS H, DUTTAROY S, RUNDQVIST B, et al. The effect of physical activity or exercise on key biomarkers in atherosclerosis--a systematic review. Atherosclerosis. 2014;235(1):150-161. |