[1] ILIFF JJ, WANG MH, LIAO YH, et al. A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid β. Sci Transl Med. 2012;4(147):11.
[2] 王琳辉,王紫兰,陈文悦,等.胶质淋巴系统:概念、功能和研究进展[J].生理学报,2018,70(1):52-60.
[3] NYCZ B, MANDERA M. The features of the glymphatic system. Auton Neurosci Basic Clin. 2021;232:8.
[4] TRUMBORE CN, RAGHUNANDAN A. An Alzheimer’s Disease Mechanism Based on Early Pathology, Anatomy, Vascular-Induced Flow, and Migration of Maximum Flow Stress Energy Location with Increasing Vascular Disease. J Alzheimers Dis. 2022; 90(1):33-59.
[5] HE PK, GAO YY, SHI L, et al. Motor progression phenotypes in early-stage Parkinson’s Disease: A clinical prediction model and the role of glymphatic system imaging biomarkers. Neurosci Lett. 2023; 814: 9.
[6] KRESS BT, ILIFF JJ, XIA MS, et al. Impairment of Paravascular Clearance Pathways in the Aging Brain. Ann Neurol. 2014;76(6):845-861.
[7] VINJE V, ZAPF B, RINGSTAD G, et al. Human brain solute transport quantified by glymphatic MRI-informed biophysics during sleep and sleep deprivation. Fluids Barriers CNS. 2023;20(1):15.
[8] HAN GX, ZHOU Y, ZHANG KM, et al. Age- and time-of-day dependence of glymphatic function in the human brain measured via two diffusion MRI methods. Front Aging Neurosci. 2023;15:12.
[9] LEE HD, XIE LL, YU M, et al. The Effect of Body Posture on Brain Glymphatic Transport. J Neurosci. 2015;35(31): 11034-10344.
[10] 陈悦,陈超美,刘则渊,等.CiteSpace知识图谱的方法论功能[J].科学学研究, 2015,33(2):242-253.
[11] 陈超美,陈悦,侯剑华,等.CiteSpace Ⅱ:科学文献中新趋势与新动态的识别与可视化[J].情报学报,2009,28(3): 401-421.
[12] ARIA M, CUCCURULLO C. bibliometrix: An R-tool for comprehensive science mapping analysis. J Informetr. 2017;11(4): 959-975.
[13] KIVINIEMI V, WANG XD, KORHONEN V, et al. A Ultra-fast magnetic resonance encephalography of physiological brain activity - Glymphatic pulsation mechanisms? J Cereb Blood Flow Metab. 2016;36(6): 1033-1045.
[14] VINJE V, EKLUND A, MARDAL K A, et al. Intracranial pressure elevation alters CSF clearance pathways. Fluids Barriers CNS. 2020;17(1): 19.
[15] KIM HJ, LIM TS, LEE SM, et al. Cerebrospinal Fluid Levels of β-Amyloid 40 and β-Amyloid 42 are Proportionately Decreased in Amyloid Positron-Emission Tomography Negative Idiopathic Normal-Pressure Hydrocephalus Patients. J Clin Neurol. 2019; 15(3):353-359.
[16] PEROSA V, OLTMER J, MUNTING LP, et al. Perivascular space dilation is associated with vascular amyloid-β accumulation in the overlying cortex. Acta Neuropathol. 2022;143(3):331-348.
[17] 卢鹤扬,冯一苇,崔梅.类淋巴系统与中枢神经系统病变的相关性研究进展[J].中国临床神经科学,2020,28(1): 78-84+92.
[18] 杨逸飞,李昊.脑部类淋巴系统的研究进展[J].中华临床医师杂志(电子版),2021, 15(1): 52-56.
[19] FAGHIH MM, SHARP MK. Is bulk flow plausible in perivascular, paravascular and paravenous channels? Fluids Barriers CNS. 2018;15:10.
[20] 陈心怡,卢艳丽,桂千,等.胶质淋巴转运MRI研究进展[J].中国医学影像技术, 2023,39(8):1249-1252.
[21] THOMAS C, SADEGHI N, NAYAK A,
et al. Impact of time-of-day on diffusivity measures of brain tissue derived from diffusion tensor imaging. Neuroimage. 2018;173:25-34.
[22] RASMUSSEN MK, MESTRE H, NEDERGAARD M. The glymphatic pathway in neurological disorders. Lancet Neurol. 2018;17(11): 10161024.
[23] MESTRE H, TITHOF J, DU T, et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension . Nat Commun. 2018;9:9.
[24] MESTRE H, HABLITZ LM, XAVIER ALR, et al. Aquaporin-4-dependent glymphatic solute transport in the rodent brain. eLife. 2018; 7:31.
[25] ILIFF JJ, LEE H, YU M, et al. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest. 2013;123(3):1299-1309.
[26] HARRISON IF, ISMAIL O, MACHHADA A, et al. Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model. Brain. 2020;143(8):2576-2593.
[27] ZHANG WH, ZHOU Y, WANG JA, et al. Glymphatic clearance function in patients with cerebral small vessel disease. Neuroimage. 2021;238:8.
[28] GAN YM, HOLSTEIN-RONSBO S, NEDERGAARD M, et al. Perivascular pumping of cerebrospinal fluid in the brain with a valve mechanism. J R Soc Interface. 2023;20(206):17.
[29] LUNDGAARD I, WANG W, EBERHARDT A, et al. Beneficial effects of low alcohol exposure, but adverse effects of high alcohol intake on glymphatic function. Sci Rep. 2018;8:16.
[30] SIGURDSSON B, HAUGLUND NL, LILIUS TO, et al. A SPECT-based method for dynamic imaging of the glymphatic system in rats. J Cereb Blood Flow Metab. 2023;43(7): 1153-1165.
[31] LI MS, KITAMURA A, BEVERLEY J, et al. Impaired Glymphatic Function and Pulsation Alterations in a Mouse Model of Vascular Cognitive Impairment. Front Aging Neurosci. 2022;13:16.
[32] PENG WG, ACHARIYAR TM, LI BM, et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol Dis. 2016;93:215-25.
[33] TAOKA T, MASUTANI Y, KAWAI H, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer’s disease cases. Jpn J Radiol. 2017;35(4):172-178.
[34] HOU CK, REN W, WANG BY, et al. A bibliometric and knowledge-map analysis of the glymphatic system from 2012 to 2022. Front Molec Neurosci. 2023;16:16.
[35] ILIFF JJ, WANG MH, ZEPPENFELD DM, et al. Cerebral Arterial Pulsation Drives Paravascular CSF-Interstitial Fluid Exchange in the Murine Brain. J Neurosci. 2013;33(46):18190-18199.
[36] ROBELIN F, LENFANT M, RICOLFI F,
et al. Idiopathic intracranial hypertension: From physiopathological mechanisms to therapeutic decision. Rev Med Interne. 2022;43(11):661-668.
[37] BAE YJ, KIM JM, CHOI BS, et al. Glymphatic function assessment in Parkinson’s disease using diffusion tensor image analysis along the perivascular space. Parkinsonism Relat Disord. 2023;114:7.
[38] JIN BJ, SMITH AJ, VERKMAN AS. Spatial model of convective solute transport in brain extracellular space does not support a “glymphatic” mechanism. J Gen Physiol. 2016;148(6):489-501.
[39] BORK PAR, LADRON-DE-GUEVARA A, CHRISTENSEN AH, et al. Astrocyte endfeet may theoretically act as valves to convert pressure oscillations to glymphatic flow. J R Soc Interface. 2023;20(204):5.
[40] LLOYD RA, STOODLEY MA, FLETCHER DF, et al. The effects of variation in the arterial pulse waveform on perivascular flow. J Biomech. 2019;90:65-70.
[41] WANG YC, VAN GELDEREN P, DE ZWART JA, et al. Cerebrovascular activity is a major factor in the cerebrospinal fluid flow dynamics. Neuroimage.2022;258:10.
[42] OZTURK B, KOUNDAL S, AL BIZRI E,
et al. Continuous positive airway pressure increases CSF flow and glymphatic transport. JCI Insight. 2023;8(12):18.
[43] RAITAMAA L, HUOTARI N, KORHONEN V,
et al. Spectral analysis of physiological brain pulsations affecting the BOLD signal. Hum Brain Mapp. 2021;42(13):4298-4313.
[44] BOSTER KAS, CAI SZ, LADRóN-DE-GUEVARA A, et al. Artificial intelligence velocimetry reveals in vivo flow rates, pressure gradients, and shear stresses in murine perivascular flows. Proc Natl Acad Sci U S A. 2023;120(14):12.
[45] SUNDARAM S, HUGHES RL, PETERSON E, et al. Establishing a framework for neuropathological correlates and glymphatic system functioning in Parkinson’s disease. Neurosci Biobehav Rev. 2019;103:305-315.
[46] CAO XJ, XU HR, FENG WX, et al. Deletion of aquaporin-4 aggravates brain pathology after blocking of the meningeal lymphatic drainage. Brain Res Bull. 2018;143:83-96.
[47] LIU SW, SUN XH, REN QG, et al. Glymphatic dysfunction in patients with early-stage amyotrophic lateral sclerosis. Brain. 2024; 147(1):100-108.
[48] KIM ST, KIM SE, LEE DA, et al. Anti-seizure medication response and the glymphatic system in patients with focal epilepsy. Eur J Neurol. 2024;31(1):9.
[49] LIANG T, CHANG FY, HUANG ZG, et al. Evaluation of glymphatic system activity by diffusion tensor image analysis along the perivascular space (DTI- ALPS) in dementia patients. Br J Radiol. 2023;96(1146):6.
[50] RINGSTAD G, VATNEHOL SAS, EIDE PK. Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain. 2017;140:2691-2705.
[51] AKIYAMA Y, YOKOYAMA R, TAKASHIMA H, et al. Accumulation of Macromolecules in Idiopathic Normal Pressure Hydrocephalus. Neurol Med Chir. 2021;61(3):211-218.
[52] OTA M, SATO N, NAKAYA M, et al. Relationships Between the Deposition of Amyloid-β and Tau Protein and Glymphatic System Activity in Alzheimer’s Disease: Diffusion Tensor Image Study. J Alzheimers Dis. 2022;90(1):295-303.
[53] KIKUTA J, KAMAGATA K, TAOKA T, et al. Water Diffusivity Changes Along the Perivascular Space After Lumboperitoneal Shunt Surgery in Idiopathic Normal Pressure Hydrocephalus. Front Neurol. 2022;13:9.
[54] TANG J, ZHANG MY, LIU N, et al. The Association Between Glymphatic System Dysfunction and Cognitive Impairment in Cerebral Small Vessel Disease. Front Aging Neurosci. 2022;14:9.
[55] MORTENSEN KN, SANGGAARD S, MESTRE H, et al. Impaired Glymphatic Transport in Spontaneously Hypertensive Rats. J Neurosci. 2019;39(32):6365-6377.
[56] XUE Y, LIU N, ZHANG MY, et al. Concomitant enlargement of perivascular spaces and decrease in glymphatic transport in an animal model of cerebral small vessel disease. Brain Res Bull. 2020;161:78-83.
[57] BUONGIORNO M, GRANELL E, CARUANA G, et al. Impairments in sleep and brain molecular clearance in people with cognitive deterioration and biological evidence of AD: a report of four cases. BMC Neurol. 2023;23(1):8.
[58] WRIGHT AM, WU YC, CHEN NK, et al. Exploring Radial Asymmetry in MR Diffusion Tensor Imaging and Its Impact on the Interpretation of Glymphatic Mechanisms. J Magn Reson Imaging. 2023. doi: 10.1002/jmri.29203.
[59] LEE DA, LEE HJ, PARK KM. Structural connectivity as a predictive factor for responsiveness to levetiracetam treatment in epilepsy. Neuroradiology. 2024;66(1):93-100.
[60] TUERXUN R, KAMAGATA K, SAITO Y, et al. Assessing interstitial fluid dynamics in type 2 diabetes mellitus and prediabetes cases through diffusion tensor imaging analysis along the perivascular space. Front Aging Neurosci. 2024;16:11.
[61] TU Y, LI Z, XIONG F, et al. Decreased DTI-ALPS and choroid plexus enlargement in fibromyalgia: a preliminary multimodal MRI study. Neuroradiology. 2023;65(12): 1749-1755. |