[1] SIEGEL RL, GIAQUINTO AN, JEMAL A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74(1):12-49.
[2] YIN L, DUAN JJ, BIAN XW, et al. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22(1):61.
[3] BIANCHINI G, DE ANGELIS C, LICATA L, et al. Treatment landscape of triple-negative breast cancer - expanded options, evolving needs. Nat Rev Clin Oncol. 2022;19(2):91-113.
[4] LI Y, ZHANG H, MERKHER Y, et al. Recent advances in therapeutic strategies for triple-negative breast cancer. J Hematol Oncol. 2022; 15(1):121.
[5] ZHANG Y, DOSTA P, CONDE J, et al. Prolonged local in vivo delivery of stimuli-responsive nanogels that rapidly release doxorubicin in triple-negative breast cancer cells. Adv Healthc Mater. 2020;9(4):e1901101.
[6] 潘振华,刘红雨,陈军.肺癌干性样细胞与耐药[J].中国肺癌杂志 2022,25(2):111-117.
[7] 乌帆,陈国华,张良,等.异黏蛋白调控三阴性乳腺癌细胞干性的机制研究[J].中华乳腺病杂志(电子版),2020,14(4):221-227.
[8] HUA Z, WHITE J, ZHOU J. Cancer stem cells in TNBC. Semi Cancer Biol. 2022;82:26-34.
[9] GE MH, ZHU XH, SHAO YM, et al. Synthesis and characterization of CD133 targeted aptamer-drug conjugates for precision therapy of anaplastic thyroid cancer. Biomater Sci. 2021;9(4):1313-1324.
[10] ZHENG Y, WANG L, YIN L, et al. Lung cancer stem cell markers as therapeutic targets: an update on signaling pathways and therapies. Front Oncol. 2022;12:873994.
[11] SHIMOKAWA M, OHTA Y, NISHIKORI S, et al. Visualization and targeting of LGR5+ human colon cancer stem cells. Nature. 2017;545(7653): 187-192.
[12] XU H, NIU M, YUAN X, et al. CD44 as a tumor biomarker and therapeutic target. Exp Hematol Oncol. 2020;9(1):36.
[13] NING ST, LEE SY, WEI MF, et al. Targeting colorectal cancer stem-like cells with anti-CD133 antibody-conjugated sn-38 nanoparticles. ACS Appl Mater. 2016;8(28):17793-17804.
[14] ZENG Z, FU M, HU Y, et al. Regulation and signaling pathways in cancer stem cells: implications for targeted therapy for cancer. Mol Cancer. 2023;22(1):172.
[15] MOHAN RAO LV, ESMON CT, PENDURTHI UR. Endothelial cell protein C receptor: a multiliganded and multifunctional receptor. Blood. 2014; 124(10):1553-1562.
[16] YU QC, SONG W, WANG D, et al. Identification of blood vascular endothelial stem cells by the expression of protein C receptor. Cell Res. 2016;26(10):1079-1098.
[17] FARES I, CHAGRAOUI J, LEHNERTZ B, et al. EPCR expression marks UM171-expanded CD34+ cord blood stem cells. Blood. 2017;129(25): 3344-3351.
[18] SUBRAMANIAM A, TALKHONCHEH MS, MAGNUSSON M, et al. Endothelial protein c receptor (EPCR) expression marks human fetal liver hematopoietic stem cells. Haematologica. 2019;104(2):e47-e50.
[19] WANG D, WANG J, BAI L, et al. Long-term expansion of pancreatic islet organoids from resident PROCR+ progenitors. Cell. 2020;180(6): 1198-1211.e19.
[20] ALTHAWADI H, ALFARSI H, BESBES S, et al. Activated protein C upregulates ovarian cancer cell migration and promotes unclottability of the cancer cell microenvironment. Oncol Rep. 2015;34(2):603-609.
[21] WANG D, LIU C, WANG J, et al. Protein C receptor stimulates multiple signaling pathways in breast cancer cells. J Biol Chem. 2018;293(4): 1413-1424.
[22] LIU C, LIN C, WANG D, et al. Procr functions as a signaling receptor and is essential for the maintenance and self-renewal of mammary stem cells. Cell Rep. 2022;38(12):110548.
[23] WANG D, HU X, LIU C, et al. Protein C receptor is a therapeutic stem cell target in a distinct group of breast cancers. Cell Res. 2019;29(10): 832-845.
[24] XU L, MENG X, XU N, et al. Gambogic acid inhibits fibroblast growth factor receptor signaling pathway in erlotinib-resistant non-small-cell lung cancer and suppresses patient-derived xenograft growth. Cell Death Dis. 2018;9(3):262.
[25] HATAMI E, JAGGI M, CHAUHAN SC, et al. Gambogic acid: a shining natural compound to nanomedicine for cancer therapeutics. BBA-Rev Cancer. 2020;1874(1):188381.
[26] ZHANG D, CHU Y, QIAN H, et al. Antitumor activity of thermosensitive hydrogels packaging gambogic acid nanoparticles and tumor-penetrating peptide irgd against gastric cancer. Inter J Nanomed. 2020;15:735-747.
[27] MI D, LI J, WANG R, et al. Postsurgical wound management and prevention of triple-negative breast cancer recurrence with a pryoptosis-inducing, photopolymerizable hydrogel. J Control Release. 2023;356:205-218.
[28] WEI F, ZHANG T, YANG Z, et al. Gambogic acid efficiently kills stem-like colorectal cancer cells by upregulating zfp36 expression. Cell Physiol Biochem. 2018;46(2):829-846.
[29] YANG R, LU M, MING L, et al. 89Zr-labeled multifunctional liposomes conjugate chitosan for pet-trackable triple-negative breast cancer stem cell targeted therapy. Inter J Nanomed. 2020;15:9061-9074.
[30] XU H, ZHANG Y, WANG P, et al. A comprehensive review of integrative pharmacology-based investigation: a paradigm shift in traditional chinese medicine. Acta Pharm Sin B. 2021;11(6):1379-1399.
[31] NOGALES C, MAMDOUH ZM, LIST M, et al. Network pharmacology: curing causal mechanisms instead of treating symptoms. Trends Pharmacol. 2022;43(2):136-150.
[32] CARIATI M, NADERI A, BROWN JP, et al. Alpha-6 integrin is necessary for the tumourigenicity of a stem cell-like subpopulation within the MCF7 breast cancer cell line. Inter J Cancer. 2008;122(2):298-304.
[33] LI M, SU F, ZHU M, et al. Research progress in the field of gambogic acid and its derivatives as antineoplastic drugs. Molecules. 2022;27(9): 2937.
[34] KIM HH, JEONG SH, HA SE, et al. Cellular regulation of kynurenic acid-induced cell apoptosis pathways in ags cells. Inter J Mol Sci. 2022; 23(16):8894.
[35] BAKER SC, SHABIR S, GEORGOPOULOS NT, et al. Ketamine-induced apoptosis in normal human urothelial cells: a direct, n-methyl-d-aspartate receptor-independent pathway characterized by mitochondrial stress. Am J Pathol. 2016;186(5):1267-1277.
[36] PORTER AG, JÄNICKE RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6(2):99-104.
[37] BERNARD A, CHEVRIER S, BELTJENS F, et al. Cleaved caspase-3 transcriptionally regulates angiogenesis-promoting chemotherapy resistance. Cancer Res. 2019;79(23):5958-5970.
[38] YANG Q, JIANG W, HOU P. Emerging role of PI3K/AKT in tumor-related epigenetic regulation. Semin Cancer Biol. 2019;59:112-124.
[39] UMEMURA S, YOSHIDA S, OHTA Y, et al. Increased phosphorylation of AKT in triple-negative breast cancers. Cancer Sci. 2007;98(12):1889-1892.
[40] SHI Z, WULFKUHLE J, NOWICKA M, et al. Functional mapping of AKT signaling and biomarkers of response from the fairlane trial of neoadjuvant ipatasertib plus paclitaxel for triple-negative breast cancer. Clin Cancer Res. 2022;28(5):993-1003.
[41] ARDITO F, GIULIANI M, PERRONE D, et al. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (review). Inter J Mol Med. 2017;40(2):271-280.
[42] YU JS, CUI W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development. 2016;143(17):3050-3060.
[43] ZHU KY, PALLI SR. Mechanisms, applications, and challenges of insect RNA interference. Annu Rev Entomol. 2020;65:293-311.
[44] 徐炎炎,卓倩,汤洋洋,等.EPCR对人乳腺癌MDA-MB-231细胞增殖、迁移的影响及机制[J].山东医药,2018,58(9):13-16.
[45] WANG Q, YANG H, ZHUO Q, et al. Knockdown of EPCR inhibits the proliferation and migration of human gastric cancer cells via the ERK1/2 pathway in a PAR-1-dependent manner. Oncol Rep. 2018;39(4): 1843-1852. |