[1] ZHOU ZB, HUANG GX, FU Q, et al. circRNA.33186 Contributes to the Pathogenesis of Osteoarthritis by Sponging miR-127-5p. Mol Ther. 2019; 27(3):531-541.
[2] WANG H, ZHAO J, WANG J. Role of circular RNAs in osteoarthritis: update on pathogenesis and therapeutics. Mol Genet Genomics. 2023;298(4):791-801.
[3] JIN Z, WANG D, ZHANG H, et al. Incidence trend of five common musculoskeletal disorders from 1990 to 2017 at the global, regional and national level: results from the global burden of disease study 2017. Ann Rheum Dis. 2020;79(8):1014-1022.
[4] 任薄霖. sa_circ_0032472对骨关节炎软骨细胞凋亡、增殖、ECM代谢的作用研究[D].长沙:中南大学,2022.
[5] ZHOU X, JIANG L, FAN G, et al. Role of the ciRS-7/miR-7 axis in the regulation of proliferation, apoptosis and inflammation of chondrocytes induced by IL-1β. Int Immunopharmacol. 2019;71:233-240.
[6] NI JL, DANG XQ, Shi ZB. CircPSM3 inhibits the proliferation and differentiation of OA chondrocytes by targeting miRNA-296-5p. Eur Rev Med Pharmacol Sci. 2020;24(7):3467-3475.
[7] LI HZ, LIN Z, Xu XH, et al. The potential roles of circRNAs in osteoarthritis: a coming journey to find a treasure. Biosci Rep. 2018;38(5):BSR20180542.
[8] SANGER HL, KLOTZ G, RIESNER D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A. 1976;73(11):3852-3856.
[9] CAPEL B, SWAIN A, NICOLIS S, et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell. 1993;73(5):1019-1030.
[10] SALZMAN J, GAWAD C, WANG PL, et al. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One. 2012;7(2):e30733.
[11] HANSEN TB, JENSEN TI, CLAUSENl BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384-388.
[12] MEMCZAK S, ENSM, ELEFSINIOTI A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333-338.
[13] LIAN X, GUO J, GU W, et al. Genome-Wide and Experimental Resolution of Relative Translation Elongation Speed at Individual Gene Level in Human Cells. PLoS Genet. 2016;12(2):e1005901
[14] LI S, LI Y, CHEN B, et al. exoRBase: a database of circRNA, lncRNA and mRNA in human blood exosomes. Nucleic Acids Res. 2018;46(D1):D106-D112.
[15] CHEN LL, BINDEREIF A, BOZZONII, et al. A guide to naming eukaryotic circular RNAs. Nat Cell Biol. 2023;25(1):1-5.
[16] HAN B, CHAO J, YAO H. Circular RNA and its mechanisms in disease: From the bench to the clinic. Pharmacol Ther. 2018;187:31-44.
[17] WANGJ, YANG B, WU C, et al. Role of circular RNAs in osteoarthritis (Review). Exp Ther Med. 2021;22(5):1279.
[18] REN S, LIN P, WANG J, et al. Circular RNAs: Promising Molecular Biomarkers of Human Aging-Related Diseases via Functioning as an miRNA Sponge. Mol Ther Methods Clin Dev. 2020;18:215-229.
[19] GERSTEIN MB, ROZOWSKY J, YAN KK, et al. Comparative analysis of the transcriptome across distant species. Nature. 2014;512(7515):445-448.
[20] PISGNANO G, MICHAEL DC, VISAL TH, et al.. Going circular: history, present, and future of circRNAs in cancer. Oncogene. 2023;42(38):2783-2800.
[21] MERCER TR, GERHARDT DJ, DINGER ME, et al. Targeted RNA sequencing reveals the deep complexity of the human transcriptome. Nat Biotechnol. 2011;30(1):99-104.
[22] LIM AS, LIM TH. Fluorescence In Situ Hybridization on Tissue Sections. Methods Mol Biol. 2017;1541:119-125.
[23] LI T, SHAO Y, FU L, et al. Plasma circular RNA profiling of patients with gastric cancer and their droplet digital RT-PCR detection. J Mol Med (Berl). 2018;96(1): 85-96.
[24] ZHANG P, GAO K, LIANG Y, et al. Ultrasensitive detection of circular RNA by accurate recognition of the specific junction site using stem-loop primer induced double exponential amplification. Talanta. 2020;217:121021.
[25] JECK WR, SORRENTINO JA, WANGK, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19(2):141-157.
[26] LI Z, HUANG C, BAO C, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015;22(3):256-264.
[27] CONN SJ, PILLMAN KA, TOUBIA J, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160(6):1125-1134.
[28] LI Z, LU J. circRNAs in osteoarthritis: research status and prospect. Front Genet. 2023;14:1173812.
[29] CONN VM, HUGOUVIEUX V, NAYAK AYAK A, et al. A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat Plants. 2017;3:17053.
[30] ZANG J, LU D, XU A. The interaction of circRNAs and RNA binding proteins: An important part of circRNA maintenance and function. J Neurosci Res. 2020;98(1): 87-97.
[31] LIANG WC, WONGCW, LIANG PP, et al. Translation of the circular RNA circβ-catenin promotes liver cancer cell growth through activation of the Wnt pathway. Genome Biol. 2019;20(1):84.
[32] FAN X, YANG Y, CHEN C, et al. Pervasive translation of circular RNAs driven by short IRES-like elements. Nat Commun. 2022;13(1):3751.
[33] PRATS AC, DAVIA F, DIALLO LH, et al. Circular RNA, the Key for Translation. Int J Mol Sci. 2020;21(22):8591.
[34] MAO X, CAO Y, GUO Z, et al. Biological roles and therapeutic potential of circular RNAs in osteoarthritis. Mol Ther Nucleic Acids. 2021;24:856-867.
[35] WENG PW, YADAV VK, PIKATANi NW, et al. Novel NFκB Inhibitor SC75741 Mitigates Chondrocyte Degradation and Prevents Activated Fibroblast Transformation by Modulating miR-21/GDF-5/SOX5 Signaling. Int J Mol Sci. 2021;22(20):11082.
[36] DELLA BELLA E, MNELLEl U, BASOLI V, et al. Stoddart MJ. Differential Regulation of circRNA, miRNA, and piRNA during Early Osteogenic and Chondrogenic Differentiation of Human Mesenchymal Stromal Cells. Cells. 2020;9(2):398.
[37] 申飞燕, 姚吉祥, 苏珊珊, 等. 敲低环状RNA WD重复含蛋白1抑制膝骨关节炎软骨细胞增殖并诱导凋亡[J]. 中国组织工程研究,2024,28(4): 499-504.
[38] ZHOU Z, MA J, LU J, et al. Circular RNA CircCDH13 contributes to the pathogenesis of osteoarthritis via CircCDH13/miR-296-3p/PTEN axis. J Cell Physiol. 2021;236(5):3521-3535.
[39] HE A, LIU Y, ZHANG R, et al. CircSFMBT2-OA alleviates chondrocyte apoptosis and extracellular matrix degradation through repressing NF-κB/NLRP3 inflammasome activation. Heliyon. 2023;9(6):e17312.
[40] JIA Z, LIU J, Wang J. circRNA-MSR regulates the expression of FBXO21 to inhibit chondrocyte autophagy by targeting miR-761 in osteoarthritis. Kaohsiung J Med Sci. 2022;38(12):1168-1177.
[41] LVX, ZHAO T, DAI Y, et al. New insights into the interplay between autophagy and cartilage degeneration in osteoarthritis. Front Cell Dev Biol. 2022;10: 1089668.
[42] MAN G, YANG H, SHEN K, et al. Circular RNA RHOT1 Regulates miR-142-5p/CCND1 to Participate in Chondrocyte Autophagy and Proliferation in Osteoarthritis. J Immunol Res. 2022;2022:4370873.
[43] ZHANG J, CHENG F, RONG G, et al. Hsa_circ_0005567 Activates Autophagy and Suppresses IL-1β-Induced Chondrocyte Apoptosis by Regulating miR-495. Front Mol Biosci. 2020;7:216.
[44] QUE W, LIU H, YANG Q. CircPRKCH modulates extracellular matrix formation and metabolism by regulating the miR-145/HGF axis in osteoarthritis. Arthritis Res Ther. 2022;24(1):216.
[45] 聂江波,金明超,方添顺,等.环状RNA在骨关节炎调控的研究进展[J]. 中国现代医生,2022,60(16):148-151.
[46] LIN S, LI H, WU B, et al. TGF-β1 regulates chondrocyte proliferation and extracellular matrix synthesis via circPhf21a-Vegfa axis in osteoarthritis. Cell Commun Signal. 2022;20(1):75.
[47] LI X, XIE C, XIAO F, et al. Circular RNA circ_0000423 regulates cartilage ECM synthesis via circ_0000423/miRNA-27b-3p/MMP-13 axis in osteoarthritis. Aging (Albany NY). 2022;14(8):3400-3415.
[48] TANG S, NIE X, RUAN J, et al. Circular RNA circNFKB1 promotes osteoarthritis progression through interacting with ENO1 and sustaining NF-κB signaling. Cell Death Dis. 2022;13(8):695.
[49] WANG T, HAO Z, LIU C, et al. LEF1 mediates osteoarthritis progression through circRNF121/miR-665/MYD88 axis via NF-кB signaling pathway [published correction appears in Cell Death Dis. 2020;11(8):689]. Cell Death Dis. 2020;11(7):598.
[50] ZHANG W, ZHANG C, HU C, et al. Circular RNA-CDR1as acts as the sponge of microRNA-641 to promote osteoarthritis progression. J Inflamm (Lond). 2020;17:8.
[51] LI G, LUO H, DING Z, et al. Silencing of circ_0000205 mitigates interleukin-1β-induced apoptosis and extracellular matrix degradation in chondrocytes via targeting miR-766-3p/ADAMTS5 axis. Innate Immun. 2022;28(2):79-90.
[52] LIAO HX, ZHANG ZH, CHEN HL, et al. CircHYBID regulates hyaluronan metabolism in chondrocytes via hsa-miR-29b-3p/TGF-β1 axis. Mol Med. 2021;27(1):56.
[53] ZHOU ZB, DU D, HUANG GX, et al. Circular RNA Atp9b, a competing endogenous RNA, regulates the progression of osteoarthritis by targeting miR-138-5p. Gene. 2018;646:203-209.
[54] ROBINSON WH, LEPUS CM, WANG Q, et al. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 2016;12(10): 580-592.
[55] WU Y, ZHANG Y, ZHANG Y, et al. circRNA hsa_circ_0005105 upregulates NAMPT expression and promotes chondrocyte extracellular matrix degradation by sponging miR-26a. Cell Biol Int. 2017;41(12):1283-1289.
[56] ARRA M, SWARNKAR G, ALIPPE Y, et al. IκB-ζ signaling promotes chondrocyte inflammatory phenotype, senescence, and erosive joint pathology. Bone Res. 2022;10(1):12.
[57] YANG Y, SHEN P, YAO T, et al. Novel role of circRSU1 in the progression of osteoarthritis by adjusting oxidative stress. Theranostics. 2021;11(4):1877-1900.
[58] LIANG Y, SHENL, NI W, et al. CircGNB1 drives osteoarthritis pathogenesis by inducing oxidative stress in chondrocytes. Clin Transl Med. 2023;13(8): e1358.
[59] LIN Z, LI P, TANG Y, et al. Hsa_circ_0007292 promotes chondrocyte injury in osteoarthritis via targeting the miR-1179/HMGB1 axis. J Orthop Surg Res. 2023; 18(1):544.
[60] WANG Y, WU C, ZHANG Y, et al. Screening for differentially expressed circRNA between Kashin-Beck disease and osteoarthritis patients based on circRNA chips. Clin Chim Acta. 2020;501:92-101.
[61] LIU P, GAO G, ZHOU X, et al. Circular RNA profiles of osteoarthritic synovium. Mol Omics. 2022;18(5):439-448.
[62] DU M, FAN S, LIU Y, et al. The Application of circRNA-016901 in Improving the Diagnostic Accuracy of Osteoarthritis. Biomed Res Int. 2022;2022: 1158562.
[63] LUOBU Z, WANG L, JIANG D, et al. CircSCAPER contributes to IL-1β-induced osteoarthritis in vitro via miR-140-3p/EZH2 axis. Bone Joint Res. 2022;11(2):61-72.
[64] YANG L, BIN Z, HUI S, et al. The Role of CDR1as in Proliferation and Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells. Stem Cells Int. 2019; 2019:2316834.
[65] MIYAKI S,LOTZ MK. Extracellular vesicles in cartilage homeostasis and osteoarthritis. J Curr Opin Rheumatol. 2018;30(1):129-135.
[66] LI S, LIU J, LIU S, et al. Mesenchymal stem cell-derived extracellular vesicles prevent the development of osteoarthritis via the circHIPK3/miR-124-3p/MYH9 axis. J Nanobiotechnol. 2021;19(1):194.
[67] LIU CX, GUO SK, NAN F, et al. RNA circles with minimized immunogenicity as potent PKR inhibitors. Mol Cell. 2022;82(2):420-434.e6.
[68] LU D, CHATTERJEE S, XIAO K, et al. A circular RNA derived from the insulin receptor locus protects against doxorubicin-induced cardiotoxicity. Eur Heart J. 2022;43(42):4496-4511.
[69] NIU D, WU Y, LIAN J. Circular RNA vaccine in disease prevention and treatment. Signal Transduct Target Ther. 2023;8(1):341. |