中国组织工程研究 ›› 2023, Vol. 27 ›› Issue (36): 5760-5765.doi: 10.12307/2023.721

• 骨与关节生物力学 bone and joint biomechanics • 上一篇    下一篇

胫骨远端骨折三种内固定方式的有限元分析

王义昌1,林文杰2,林  涛1,周柏安1,黄文华1,3,梁振明1,魏劲松1,欧阳汉斌1   

  1. 1广东医科大学附属医院骨科中心,广东省医学3D打印应用转化工程中心临床基地,广东省湛江市   524002;2江门市中心医院四肢关节骨科,广东省江门市   529070;3南方医科大学基础医学院人体解剖学教研室,广东省广州市   510515
  • 收稿日期:2022-09-21 接受日期:2022-11-16 出版日期:2023-12-28 发布日期:2023-03-24
  • 通讯作者: 魏劲松,博士,主任医师 ,广东医科大学附属医院骨科中心,广东省湛江市 524002 欧阳汉斌,博士 ,副主任医师 ,广东医科大学附属医院骨科中心,广东省湛江市 524002
  • 作者简介:王义昌,男,1995年生,汉族,广东医科大学在读硕士,主要从事数字骨科方面的研究。
  • 基金资助:
    2018年湛江市科技发展专项资金竞争性分配项目(2018A01036),课题名称:3D打印辅助膝关节单髁置换优化截骨设计及生物力学研究,项目负责人:欧阳汉斌;2021年广东省科技专项资金(“大专项+任务清单”)竞争性分配项目(2021A05243),课题名称:对侧皮质锁定技术对骨折应变定向调控的力学机制研究,项目负责人:欧阳汉斌

Finite element analysis of three internal fixation methods for distal tibial fractures

Wang Yichang1, Lin Wenjie2, Lin Tao1, Zhou Baian1, Huang Wenhua1, 3, Liang Zhenming1, Wei Jinsong1, Ouyang Hanbin1   

  1. 1Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Clinical Base of Guangdong Medical 3D Printing Application and Transformation Engineering Center, Zhanjiang 524002, Guangdong Province, China; 2Department of Extremities and Articular Orthopedics, Jiangmen Central Hospital, Jiangmen 529070, Guangdong Province, China; 3Department of Human Anatomy, School of Basic Medicine, Southern Medical University, Guangzhou 510515, Guangdong Province, China
  • Received:2022-09-21 Accepted:2022-11-16 Online:2023-12-28 Published:2023-03-24
  • Contact: Wei Jinsong, MD, Chief physician, Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Clinical Base of Guangdong Medical 3D Printing Application and Transformation Engineering Center, Zhanjiang 524002, Guangdong Province, China Ouyang Hanbin, MD, Associate chief physician, Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Clinical Base of Guangdong Medical 3D Printing Application and Transformation Engineering Center, Zhanjiang 524002, Guangdong Province, China
  • About author:Wang Yichang, Master candidate, Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Clinical Base of Guangdong Medical 3D Printing Application and Transformation Engineering Center, Zhanjiang 524002, Guangdong Province, China
  • Supported by:
    2018 Competitive Allocation Project of Special Science and Technology Development Fund of Zhanjiang, No. 2018A01036 (to OHB); Competitive Allocation Project of Special Fund for Science and Technology of Guangdong Province in 2021 (“Major Project+Task List”), No. 2021A05243 (to OHB)

摘要:


文题释义:
骨折间隙微动:又称骨折间隙控制性细微的活动,是骨折愈合中重要的机械因素,有利于促进骨痂的生长,加快骨折愈合的速度。
有限元模型:是运用有限元分析方法建立的模型,是一组在节点处连接、仅靠节点传力、仅在节点处收约束的单元组合体。

背景:目前对比3种内固定技术治疗胫骨远端骨折生物力学特性差异的研究较少。
目的:比较胫骨远端骨折经胫骨内侧锁定钢板、专家级髓内钉和逆行髓内钉固定后生物力学特性的差异。
方法:基于SAWBONES第4代人工复合胫骨模型的CT数据,利用三维重建技术构建胫骨远端骨折数字模型(AO/ASIF 43-A3型),在此基础上模拟胫骨内侧锁定钢板、专家级髓内钉和逆行髓内钉3种内固定方式;采用轴向压缩及扭转2种载荷工况分别对3组植入装配体模型进行有限元分析,比较三者的应力分布、应力峰值及骨折间隙位移变化的差异。
结果与结论:①3组内固定物加载2种载荷工况时,专家级髓内钉组在扭转工况下应力峰值在未锁定的主钉孔处,为283.53 MPa;胫骨内侧锁定钢板组在扭转工况下应力峰值位于第3颗螺钉上,为913.07 MPa;逆行髓内钉组在扭转工况下应力峰值在第2个主钉孔处,为435.42 MPa;逆行髓内钉组内踝处主钉孔的周围皮质骨应力峰值出现在较高的轴向压缩工况下,峰值为55.34 MPa;②在骨折间隙位移方面,加载轴向压缩载荷时,专家级髓内钉组4个区域的切向位移最高;胫骨内侧锁定钢板组4个区域的轴向位移最高,且峰值在外侧区;专家级髓内钉组及逆行髓内钉组轴向位移峰值均位于后侧区;③加载轴向扭转载荷时,胫骨内侧锁定钢板组和逆行髓内钉组轴向位移峰值均在外侧区,而逆行髓内钉组4个区域的切向位移均小于胫骨内侧锁定钢板组及专家级髓内钉组;④提示对于胫骨远端骨折,逆行髓内钉在骨折端微动控制和内固定结构安全性方面相比胫骨内侧锁定钢板和专家级髓内钉更具优势。
https://orcid.org/0000-0001-7971-162X (王义昌) 

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程

关键词: 内固定, 胫骨远端骨折, 有限元, 生物力学, 骨折间隙微动, 应力分布

Abstract: BACKGROUND: Few studies are comparing the biomechanical characteristics of three internal fixation techniques in the treatment of distal tibial fractures.  
OBJECTIVE: To compare the biomechanical properties of distal tibial fractures fixed by medial distal tibial plate, anterior-grade expert tibial nail and retrograde tibial nail.
METHODS: Based on the CT data of a SAWBONES 4th generation artificial composite tibia model, a simulation model of distal tibia fracture (AO/ASIF 43-A3) was constructed by digital 3D reconstruction technology. On this basis, three internal fixation methods including locking plate of the medial tibia, expert grade intramedullary nail and retrograde tibial nail were simulated.  Finite element analysis was carried out for three groups of implanted assembly models under axial compression and axial torsion loading conditions respectively, and the differences in stress distribution, stress peak value and fracture space displacement were compared among the three groups.  
RESULTS AND CONCLUSION: (1) When the three groups of internal fixators were loaded under two load conditions, the peak stress of the expert tibial nail group was 283.53 MPa at the unlocked main nail hole under the torsion condition. In the medial distal tibial plate group, the stress peak was located on the third screw, which was 913.07 MPa under the torsional condition. In the retrograde tibial nail group, the stress peak was at the second main nail hole under the torsion condition, which was 435.42 MPa. In the retrograde tibial nail group, the stress peak of the cortical bone around the main nail hole at the medial malleolus appeared under high axial compression condition, which was 55.34 MPa. (2) In terms of fracture gap micromovement, the expert tibial nail group had the highest tangential displacement in the four regions under axial compression load. The axial displacement of the four regions in the medial distal tibial plate group was the highest, and the maximum value was in the lateral region. The peak axial displacement of the expert tibial nail group and retrograde tibial nail group was located in the posterior region. (3) When the axial torsional load was loaded, the peak axial displacement of the medial distal tibial plate group and retrograde tibial nail group was in the lateral region, and the tangential displacement of the four regions in the retrograde tibial nail group was smaller than that in the medial distal tibial plate group and expert tibial nail group. (4) It is indicated that retrograde tibial nail has a biomechanical advantage over the medial distal tibial plate and expert tibial nail in distal tibial fractures in terms of fracture end fretting and internal fixation stress.

Key words: internal fixation, distal tibial fracture, finite element, biomechanics, fracture space micromovement, stress distribution

中图分类号: