中国组织工程研究 ›› 2023, Vol. 27 ›› Issue (18): 2831-2836.doi: 10.12307/2023.317

• 骨与关节生物力学 bone and joint biomechanics • 上一篇    下一篇

髌腱弹性蛋白降解对其准静态拉伸力学性能的影响

刘晓云1,邓羽平1,2,3,李飞飞1,赵东良3,4,杨  洋1,黄  涛1,5,谭文长3,4,吴耀彬1,黄文华1,6,李严兵1   

  1. 1南方医科大学基础医学院人体解剖学国家重点学科,广东省医学生物力学重点实验室,广东省医学3D打印应用转化工程技术研究中心,广东省广州市   510515;2南方医科大学中西医结合医院骨伤科,广东省广州市   510315;3生物医学工程研究所,深圳湾实验室,广东省深圳市   518132;4化学生物学与生物技术学院,北京大学深圳研究生院,广东省深圳市   518055;5广州中医药大学第三附属医院,广东省广州市   510378;6南方医科大学第三附属医院,广东省医学3D打印应用转化创新平台,广东省广州市   510000
  • 收稿日期:2022-05-05 接受日期:2022-06-06 出版日期:2023-06-28 发布日期:2022-09-17
  • 通讯作者: 李严兵,博士,教授,硕士生导师,南方医科大学基础医学院人体解剖学国家重点学科,广东省医学生物力学重点实验室,广东省医学3D打印应用转化工程技术研究中心,广东省广州市 510515
  • 作者简介:刘晓云,女,1997年生,广东省湛江市人,汉族,南方医科大学在读硕士,主要从事软组织生物力学方面的研究。
  • 基金资助:
    广东省科技计划项目(2018B090944002),项目负责人:李严兵;广东省基础与应用基础研究基金(2020B1515120001),项目负责人:黄文华;深圳市科技计划(JCYJ20210324130401005),项目负责人:赵东良

Effect of elastin degradation of patellar tendon on the quasi-static tensile mechanical properties

Liu Xiaoyun1, Deng Yuping1, 2, 3, Li Feifei1, Zhao Dongliang3, 4, Yang Yang1, Huang Tao1, 5, Tan Wenchang3, 4, Wu Yaobin1, Huang Wenhua1, 6, Li Yanbing1   

  1. 1Guangdong Engineering Research Center for Translation of Medical 3D Printing Application; 2Department of Orthopedics and Traumatology, Integrated Hospital of Traditional Chinese Medicine and Western Medicine, Southern Medical University; 3Institute of Biomedical Engineering, Shenzhen Bay Laboratory; 4School of Chemical Biology and Biotechnology; 5The Third Affiliated Hospital of Guangzhou University of Chinese Medicine; 6The Third Affiliated Hospital of Southern Medical University
  • Received:2022-05-05 Accepted:2022-06-06 Online:2023-06-28 Published:2022-09-17
  • Contact: Li Yanbing, MD, Professor, Master’s supervisor, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China
  • About author:Liu Xiaoyun, Master candidate, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China
  • Supported by:
    Guangdong Science and Technology Program Project, No. 2018B090944002 (to LYB); Guangdong Provincial Basic and Applied Basic Research Fund, No. 2020B1515120001 (to HWH); Shenzhen Science and Technology Plan, No. JCYJ20210324130401005 (to ZDL)

摘要:

文题释义:
准静态拉伸:在经典拉伸试验中,载荷稳定增加,且平稳施加称为准静态。准静态试验方法的上限大约为10-1 s-1的变形速度,因此最大增加量(例如应变)不能超过0.1%/s。
应力松弛:是高分子黏弹性特有的现象,指在一定温度和恒定应变的作用下,试样的应力随时间的增加而衰减的现象。

背景:髌腱是维持膝关节稳定的重要结构,在拉伸作用下表现出特有的非线性力学特性,但是弹性蛋白在拉伸载荷下对髌腱力学行为的影响尚不清楚。
目的:通过弹性蛋白的靶向酶处理,研究弹性蛋白对髌腱力学性能的影响。
方法:①将30个40-50 mg新鲜猪髌腱平均分配到5种不同弹性蛋白酶浓度(0,1,5,10,20 U/mL)中孵育以及在5个不同的时间(0,1,4,6,12 h)的弹性蛋白酶溶液中孵育,最后检测弹性蛋白含量。②将髌腱分别在PBS溶液、5 U/mL弹性蛋白酶溶液中处理8 h,进行Verhoeff Van Gieson(VVG)染色和Masson染色。③将20个新鲜猪髌腱随机分为PBS对照组和弹性蛋白酶处理组(弹性蛋白酶组),在试样表面标记9个点后进行纵向拉伸及应力松弛实验,使用光学非接触法计算标记点的位移用于后续应变分析并计算应力;然后将试样分别在PBS溶液、5 U/mL弹性蛋白酶溶液中孵育8 h,再次进行同样的力学测试。
结果与结论:①在5 U/mL弹性蛋白酶溶液中孵育8 h可以满足此次实验要求;②与处理前相比,PBS组和酶处理组的组织拉伸应力显著降低,均降低约40%(P < 0.001,P < 0.01);与处理前相比,处理后的松弛百分比显著增加,前后相差约12%(P < 0.05);在归一化的平均应力-时间曲线上,酶处理组比PBS组应力降低更大,两者相差约16%(P < 0.0001);③以上结果表明,弹性蛋白在髌腱的拉伸力学特性及黏弹性特性中起到重要作用,进一步补充了对多尺度肌腱结构-功能关系的理解,这有利于未来对微观结构本构模型的发展和改进,以模拟髌腱病变及手术干预。

https://orcid.org/0000-0002-4728-9521 (刘晓云) 

中国组织工程研究杂志出版内容重点:人工关节;骨植入物;脊柱;骨折;内固定;数字化骨科;组织工程

关键词: 髌腱, 生物力学, 应力松弛, 弹性蛋白, 准静态拉伸, 弹性蛋白酶, 黏弹性, 酶处理

Abstract: BACKGROUND: Patellar tendon is an important structure to maintain the stability of the knee joint and exhibits unique nonlinear mechanical properties under tension, but the effect of elastin on the mechanical behavior of the patellar tendon under tensile loading is still unclear.  
OBJECTIVE: To study the effect of elastin on the mechanical properties of patellar tendon through targeted enzyme treatment of elastin.
METHODS:  (1) Thirty fresh porcine patellar tendons, weighing 40–50 mg, were evenly divided into five different elastase concentrations (0, 1, 5, 10, 20 U/mL) or incubated in elastase solutions for five different times (0, 1, 4, 6, 12 hours), and finally the elastin content was detected. (2) Patellar tendon was treated in PBS or 5 U/mL elastase for 8 hours, then Verhoeff Van Gieson (VVG) staining and Masson staining were performed. (3) Twenty fresh porcine patellar tendons were randomly divided into PBS control group and elastase-treated group. After 9 points were marked on the sample surface, the longitudinal tensile test and stress relaxation test were carried out. The displacement of the marked points was calculated by optical non-contact method for subsequent strain analysis and stress calculation. The samples were incubated in PBS or 5 U/mL elastase for 8 hours, and the same mechanical test was performed again.  
RESULTS AND CONCLUSION: (1) Incubating in 5 U/mL elastase for 8 hours could meet the requirements of this experiment. (2) Compared with pre-treatment, tissue tensile stress was significantly reduced in the PBS and elastase-treated groups, which were both decreased by about 40% (P < 0.001, P < 0.01). Compared with pre-treatment, the relaxation percentage after treatment increased significantly, with a difference of about 12% (P < 0.05). On the normalized average stress-time curve, the stress of elastase-treated treatment group decreased more than that of PBS group, with a difference of about 16% (P < 0.0001). (3) The above results showed that elastin played an important role in the tensile mechanical properties and viscoelastic properties of patellar tendon, further supplementing the understanding of the multiscale tendon structure-function relationships, which would be beneficial to the development and improvement of microstructure constitutive model in the future to simulate patellar tendon lesions and surgical intervention.

Key words: patellar tendon, biomechanics, stress relaxation, elastin, quasi-static tensile, elastase, viscoelasticity, enzyme treatment

中图分类号: