[1] GRADOS MA, ALVI MH, SRIVASTAVA S. Behavioral and psychiatric manifestations in Cornelia de Lange syndrome. Curr Opin Psychiatry. 2017;30(2):92-96.
[2] JANEK KC, SMITH DF, KLINE AD, et al. Improvement in hearing loss over time in Cornelia de Lange syndrome. Int J Pediatr Otorhinolaryngol. 2016;87:203-207.
[3] BOTTAI D, SPREAFICO M, PISTOCCHI A, et al. Modeling Cornelia de Lange syndrome in vitro and in vivo reveals a role for cohesin complex in neuronal survival and differentiation. Hum Mol Genet. 2019;28(1): 64-73.
[4] KLINE AD, MOSS JF, SELICORNI A, et al. Diagnosis and management of Cornelia de Lange syndrome: first international consensus statement. Nat Rev Genet. 2018;19(10):649-666.
[5] 林明,潘金勇,张惠荣.敲除 NIPBL 基因可下调小鼠骨髓间充质干细胞增殖及成骨分化能力[J].中国组织工程研究,2020,24(7):1002.
[6] ESPAGNOLLE N, GUILLOTON F, DESCHASEAUX F, et al. CD146 expression on mesenchymal stem cells is associated with their vascular smooth muscle commitment. J Cell Mol Med. 2014;18(1):104-114.
[7] WU Z, LU H, YAO J, et al. GABARAP promotes bone marrow mesenchymal stem cells-based the osteoarthritis cartilage regeneration through the inhibition of PI3K/AKT/mTOR signaling pathway. J Cell Physiol. 2019;234(11):21014-21026.
[8] CAO D, MA F, OUYANG S, et al. Effects of macrophages and CXCR2 on adipogenic differentiation of bone marrow mesenchymal stem cells. J Cell Physiol. 2019;234(6):9475-9485.
[9] JING Y, JING J, YE L,et al. Chondrogenesis and osteogenesis are one continuous developmental and lineage defined biological process. Sci Rep. 2017;7(1):10020.
[10] LIAN WS, KO JY, WU RW, et al. MicroRNA-128a represses chondrocyte autophagy and exacerbates knee osteoarthritis by disrupting Atg12. Cell Death Dis. 2018;9(9):919.
[11] SANTIBANEZ JF, KOCIC J. Transforming growth factor-β superfamily, implications in development and differentiation of stem cells. Biomol Concepts. 2012;3(5):429-445.
[12] KAWAUCHI S, CALOF AL, SANTOS R, et al. Multiple organ system defects and transcriptional dysregulation in the Nipbl(+/-) mouse, a model of Cornelia de Lange Syndrome. PLoS Genet. 2009;5(9):e1000650.
[13] GU W, WANG L, GU R, et al. Defects of cohesin loader lead to bone dysplasia associated with transcriptional disturbance. J Cell Physiol. 2021;236(12):8208-8225.
[14] KAGEY MH, NEWMAN JJ, BILODEAU S, et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature. 2010; 467(7314):430-435.
[15] ROHATGI S, CLARK D, KLINE AD, et al. Facial diagnosis of mild and variant CdLS: Insights from a dysmorphologist survey. Am J Med Genet A. 2010; 152A(7):1641-1653.
[16] CASTRONOVO P, GERVASINI C, CEREDA A, et al. Premature chromatid separation is not a useful diagnostic marker for Cornelia de Lange syndrome. Chromosome Res. 2009;17(6):763-771.
[17] 周平,朱琳,范琼丽,等. Cornelia de Lange综合征首个国际共识的解读[J].中国当代儿科杂志,2020,22(8):815-820.
[18] GOLDRING MB. Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis. Ther Adv Musculoskelet Dis. 2012;4(4):269-285.
[19] AGHAJANIAN P, MOHAN S. The art of building bone: emerging role of chondrocyte-to-osteoblast transdifferentiation in endochondral ossification. Bone Res. 2018;6:19.
[20] ONO N, ONO W, NAGASAWA T, et al. A subset of chondrogenic cells provides early mesenchymal progenitors in growing bones. Nat Cell Biol. 2014;16(12):1157-1167.
[21] KOBAYASHI T, LU J, COBB BS, et al. Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proc Natl Acad Sci U S A. 2008;105(6):1949-1954.
[22] SONG H, PARK KH. Regulation and function of SOX9 during cartilage development and regeneration. Semin Cancer Biol. 2020;67(Pt 1):12-23.
[23] LEFEBVRE V, ANGELOZZI M, HASEEB A. SOX9 in cartilage development and disease. Curr Opin Cell Biol. 2019;61:39-47.
[24] GU J, GU W, LIN C, et al. Human umbilical cord mesenchymal stem cells improve the immune-associated inflammatory and prothrombotic state in collagen type-Ⅱ-induced arthritic rats. Mol Med Rep. 2015;12(5): 7463-7470.
[25] 毛瑞,何影,代自超,等. SOX9在SD大鼠胚胎发育髁突软骨与胫骨生长板软骨中的时间表达研究[J].昆明医科大学学报,2022, 43(2):1-6.
[26] 张权,陈恋,常铖,等.两种不同的体外诱导人脐带间充质干细胞成软骨细胞方法的比较[J].中国细胞生物学学报,2019,41(10): 1967-1975.
[27] 樊薰勤,张明勇,李雯婷,等. sox-9通过Wnt3a/β-catenin通路促进大鼠骨髓间充质干细胞分化[J].中国骨质疏松杂志,2021,27(8): 1169-1173.
[28] BACH FC, DE ROOIJ KM, RIEMERS FM, et al. Hedgehog proteins and parathyroid hormone-related protein are involved in intervertebral disc maturation, degeneration, and calcification. JOR Spine. 2019;2(4): e1071.
[29] 车家驹,金旭红,戴涛.BMP在BMSC成骨、软骨分化中作用及机制的研究进展[J].山东医药,2020,60(16):99-101.
[30] YANG Y, NIAN H, TANG X, et al. Effects of the combined Herba Epimedii and Fructus Ligustri Lucidi on bone turnover and TGF-β1/Smads pathway in GIOP rats. J Ethnopharmacol. 2017;201:91-99.
[31] DE KROON LM, NARCISI R, VAN DEN AKKER GG, et al. SMAD3 and SMAD4 have a more dominant role than SMAD2 in TGFβ-induced chondrogenic differentiation of bone marrow-derived mesenchymal stem cells. Sci Rep. 2017;7:43164.
[32] 郝喆,杨文静,倪娟. IL-31通过调控TGF-β1/Smad4信号通路促进骨质疏松的机制研究[J].中国免疫学杂志,2019,35(5):599-603.
[33] 赵久梅,王哲,李学英.调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用[J].中国生物工程杂志,2021, 41(10):62-72.
[34] DERYNCK R, ZHANG YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425(6958):577-584.
[35] 刘俊银,冯玮,涂小林. Smad4促进成骨分化的机制研究[J].中国骨质疏松杂志,2019,25(5):600-605,655.
|