中国组织工程研究 ›› 2022, Vol. 26 ›› Issue (19): 3071-3077.doi: 10.12307/2022.388
• 干细胞综述 stem cell review • 上一篇 下一篇
白佳萌1,刘光伟2,谢 露1,毛垚耀1,何惠昌1,王春景1
收稿日期:
2021-02-03
修回日期:
2021-03-10
接受日期:
2021-07-15
出版日期:
2022-07-08
发布日期:
2021-12-29
通讯作者:
刘光伟,主任医师,副教授,河南中医药大学第一附属医院消化科,河南省郑州市 450000
作者简介:
白佳萌,女,1994年生,河南省周口市人,汉族,在读硕士,主要从事消化系统疾病的防治研究。
基金资助:
Bai Jiameng1, Liu Guangwei2, Xie Lu1, Mao Yaoyao1, He Huichang1, Wang Chunjing1
Received:
2021-02-03
Revised:
2021-03-10
Accepted:
2021-07-15
Online:
2022-07-08
Published:
2021-12-29
Contact:
Liu Guangwei, Chief physician, Associate professor, Department of Gastroenterology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
About author:
Bai Jiameng, Master candidate, Department of Gastroenterology, First Clinical School of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
Supported by:
摘要:
文题释义:
外泌体:是直径为30-150 nm的脂质双层结构囊泡,几乎所有类型的细胞都能分泌,含有DNA、RNA、mRNA、miRNA、蛋白质等,在细胞间信号传递中起着重要的作用。外泌体在介导细胞间信息传递、产生免疫耐受及组织修复再生等方面发挥作用。
肝再生:包括肝实质细胞再生和肝组织结构重建,肝细胞在再生中起重要作用,多种细胞因子和生长因子通过不同机制对其进行调控。
背景:已有许多研究表明了间充质干细胞在疾病治疗和再生医学领域具有广阔的应用前景,另外,除了间充质干细胞本身,来源于间充质干细胞的外泌体也成为研究者关注的热点,有望成为新的疾病诊疗方法。
目的:综述间充质干细胞及其外泌体在肝再生领域中的应用、挑战及前景,深入了解其发挥作用的治疗机制。
方法:以“mesenchymal stem cells,MSCs,exosomes,liver,regenerate”“间充质干细胞,外泌体,肝,再生”为检索词,检索PubMed数据库、万方数据库、CNKI数据库中发表的相关文献,通过筛选整理,排除与研究内容无关的文献、重复性研究和过早发表的文献,最终保留85篇文献进行综述。
结果与结论:通过对现有的研究总结了间充质干细胞及其外泌体能够发挥肝脏保护作用并延缓疾病进展,具体机制包括减少肝细胞凋亡、调节自噬、改善炎症反应、改善氧化应激、抑制纤维化、促进血管生成等,可作为肝损伤相关疾病治疗研究的新方向。
https://orcid.org/0000-0002-5939-2059 (白佳萌)
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
中图分类号:
白佳萌, 刘光伟, 谢 露, 毛垚耀, 何惠昌, 王春景. 间充质干细胞及其外泌体在肝再生领域的应用[J]. 中国组织工程研究, 2022, 26(19): 3071-3077.
Bai Jiameng, Liu Guangwei, Xie Lu, Mao Yaoyao, He Huichang, Wang Chunjing. Application of mesenchymal stem cells and exosomes in liver regeneration[J]. Chinese Journal of Tissue Engineering Research, 2022, 26(19): 3071-3077.
[1] LOU G, CHEN Z, ZHENG M, et al. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp Mol Med. 2017;49(6): e346. [2] ZHAO T, SUN F, LIU J, et al. Emerging Role of Mesenchymal Stem Cell-derived Exosomes in Regenerative Medicine. Curr Stem Cell Res Ther. 2019; 14(6):482-494. [3] MEYER MB, BENKUSKY NA, SEN B, et al. Epigenetic Plasticity Drives Adipogenic and Osteogenic Differentiation of Marrow-derived Mesenchymal Stem Cells. J Biol Chem. 2016;291(34):17829-17847. [4] DESANCÉ M, CONTENTIN R, BERTONI L, et al. Chondrogenic Differentiation of Defined Equine Mesenchymal Stem Cells Derived from Umbilical Cord Blood for Use in Cartilage Repair Therapy. Int J Mol Sci. 2018;19(2):537. [5] GAO S, GUO X, ZHAO S, et al. Differentiation of human adipose-derived stem cells into neuron/motoneuron-like cells for cell replacement therapy of spinal cord injury. Cell Death Dis. 2019;10(8):597. [6] NITTA S, KUSAKARI Y, YAMADA Y, et al. Conversion of mesenchymal stem cells into a canine hepatocyte-like cells by Foxa1 and Hnf4a. Regen Ther. 2020;14:165-176. [7] WANG D, HUANG S, YUAN X, et al. The regulation of the Treg/Th17 balance by mesenchymal stem cells in human systemic lupus erythematosus. Cell Mol Immunol. 2017;14(5):423-431. [8] COSENZA S, TOUPET K, MAUMUS M, et al. Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics. 2018;8(5):1399-1410. [9] CHENG X, ZHANG G, ZHANG L, et al. Mesenchymal stem cells deliver exogenous miR-21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration. J Cell Mol Med. 2018;22(1):261-276. [10] CHEW JRJ, CHUAH SJ, TEO KYW, et al. Mesenchymal stem cell exosomes enhance periodontal ligament cell functions and promote periodontal regeneration. Acta Biomater. 2019;89:252-264. [11] 郑林华,韩英.骨髓干细胞对终末期肝病治疗的临床研究进展[J].中华细胞与干细胞杂志(电子版),2015,5(2):53-57. [12] YANG B, DUAN W, WEI L, et al. Bone Marrow Mesenchymal Stem Cell-Derived Hepatocyte-Like Cell Exosomes Reduce Hepatic Ischemia/Reperfusion Injury by Enhancing Autophagy. Stem Cells Dev. 2020; 29(6):372-379. [13] 许烂漫,何进科,张天晓,等.骨髓间充质干细胞免疫调节作用对急性肝功能衰竭大鼠肝再生的影响[J].中华传染病杂志,2016,34(2): 97-102. [14] 李东良,何秀华,范敬静,等.骨髓动员与骨髓间充质干细胞移植促进极量肝切除大鼠肝再生作用的对照研究[J].解放军医学杂志,2014, 39(8):595-600. [15] MEIRELLES LDA S, FONTES AM, COVAS DT, et al. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009;20(5-6):419-427. [16] DAMANIA A, JAIMAN D, TEOTIA AK, et al. Mesenchymal stromal cell-derived exosome-rich fractionated secretome confers a hepatoprotective effect in liver injury. Stem Cell Res Ther. 2018;9(1):31. [17] PAREKKADAN B, VAN POLL D, SUGANUMA K, et al. Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS One. 2007;2(9) : e941. [18] TAN CY, LAI RC, WONG W, et al. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther. 2014;5(3):76. [19] ZHAO S, LIU Y, PU Z. Bone marrow mesenchymal stem cell-derived exosomes attenuate D-GaIN/LPS-induced hepatocyte apoptosis by activating autophagy in vitro. Drug Des Devel Ther. 2019;13:2887-2897. [20] RONG X, LIU J, YAO X, et al. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/beta-catenin pathway. Stem Cell Res Ther. 2019;10(1):98. [21] XU LJ, WANG SF, WANG DQ, et al. Adipose-derived stromal cells resemble bone marrow stromal cells in hepatocyte differentiation potential in vitro and in vivo. World J Gastroenterol. 2017;23(38):6973-6982. [22] 朱希山,施薇,台卫平,等. 脂肪与骨髓来源间充质干细胞生物学特性的比较[J].中国组织工程研究与临床康复,2011,15(32):5936-5940. [23] 朱希山,施薇,台卫平,等.人脂肪组织与骨髓来源间充质干细胞生物学特性的比较[J].中华器官移植杂志,2012,33(11):694-698. [24] SEO MJ, SUH SY, BAE YC, et al. Differentiation of humanadipose stromal cells into hepatic lineage in vitro and invivo. Biochem Biophys Res Commun. 2005;328:258-264. [25] BONORA-CENTELLES A, JOVER R, MIRABET V, et al. Sequentialhepatogenic transdifferentiation of adipose tissue-derivedstem cells: relevance of different extracellular signalingmolecules, transcription factors involved, and expressionof new key marker genes. Cell Transplant. 2009;18:1319-1340. [26] LI X, YUAN J, LI W, et al. Direct differentiation of homogeneous human adipose stem cells into functional hepatocytes by mimicking liver embryogenesis. J Cell Physiol. 2014;229(6):801-812. [27] 王敏,裴海云,管利东,等.肝细胞条件培养液对人脂肪问充质干细胞向肝细胞分化和增殖的作用[J].中华肝脏病杂志,2009,17(7): 544-548. [28] LIAU LL, MAKPOL S, AZURAH AGN, et al. Human adipose-derived mesenchymal stem cells promote recovery of injured HepG2 cell line and show sign of early hepatogenic differentiation. Cytotechnology. 2018;70(4): 1221-1233. [29] GUO DL, WANG ZG, XIONG LK, et al. Hepatogenic differentiation from human adipose-derived stem cells and application for mouse acute liver injury. Artif Cells Nanomed Biotechnol. 2017;45(2):224-232. [30] 史光军,张亚东,胡音音,等.脂肪间充质干细胞移植上调肝脏增殖细胞核抗原表达促进肝细胞的再生[J].中国组织工程研究,2017, 21(17):2690-2695. [31] DENG L, KONG X, LIU G, et al. Transplantation of Adipose-Derived Mesenchymal Stem Cells Efficiently Rescues Thioacetamide-Induced Acute Liver Failure in Mice. Transplant Proc. 2016;48(6):2208-2215. [32] LIU S, GUO R, HOU X, et al. Adipose-tissue derived porcine mesenchymal stem cells efficiently ameliorate CCl(4)-induced acute liver failure in mice. Cytotechnology. 2020;72(3):327-341. [33] 金银鹏.人脂肪间充质干细胞治疗急性肝功能衰竭大鼠疗效的探索[D].贵阳:贵阳医学院,2014. [34] 马涛.脂肪间充质干细胞移植对大鼠小体积肝移植术后肝损伤的治疗作用及机制研究[D].杭州:浙江大学,2012. [35] 何其宽.脂肪间充质干细胞来源外泌体对大鼠肝脏缺血再灌注损伤保护作用的研究[D].温州:温州医科大学,2018. [36] QU Y, ZHANG Q, CAI X, et al. Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation. J Cell Mol Med. 2017;21:2491-2502. [37] 游茂春,刘广益,程俊,等.脂肪干细胞及其外泌体减轻肝细胞凋亡改善大鼠肝纤维化[J].中国比较医学杂志,2020,30(7):30-37. [38] DING DC, CHANG YH, SHYU WC, et al. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy. Cell Transplant. 2015;24(3):339-337. [39] GAO F, CHIU SM, MOTAN DA, et al. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis. 2016;7(1):e2062. [40] ZHANG Y, LI Y, LI W, et al. Therapeutic Effect of Human Umbilical Cord Mesenchymal Stem Cells at Various Passages on Acute Liver Failure in Rats. Stem Cells Int. 2018;2018:7159465. [41] CAI W, SUN J, SUN Y, et al. NIR-II FL/PA dual-modal imaging long-term tracking of human umbilical cord-derived mesenchymal stem cells labeled with melanin nanoparticles and visible HUMSC-based liver regeneration for acute liver failure. Biomater Sci. 2020;8(23):6592-6602. [42] ZHENG S, YANG J, YANG J, et al. Transplantation of umbilical cord mesenchymal stem cells via different routes in rats with acute liver failure. Int J Clin Exp Pathol. 2015;8(12):15854-15862. [43] YANG JF, CAO HC, PAN QL, et al. Mesenchymal stem cells from the human umbilical cord ameliorate fulminant hepatic failure and increase survival in mice. Hepatobiliary Pancreat Dis Int. 2015;14(2):186-193. [44] YAO J, ZHENG J, CAI J, et al. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells alleviate rat hepatic ischemia-reperfusion injury by suppressing oxidative stress and neutrophil inflammatory response. FASEB J. 2019;33(2):1695-1710. [45] ZHANG S, CHEN L, LIU T, et al. Human umbilical cord matrix stem cells efficiently rescue acute liver failure through paracrine effects rather than hepatic differentiation. Tissue Eng Part A. 2012;18(13-14):1352-1364. [46] SONG XJ, ZHANG L, LI Q, et al. hUCB-MSC derived exosomal miR-124 promotes rat liver regeneration after partial hepatectomy via downregulating Foxg1. Life Sci. 2021;265:118821. [47] 陈良,冯啸,袁泽南,等.人脐带间充质干细胞来源的外泌体对肝脏再生的影响[J].中华实验外科杂志,2017,34(10):1684-1687. [48] LI T, YAN Y, WANG B, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev. 2013;22(6): 845-854. [49] SHAO M, XU Q, WU Z, et al. Exosomes derived from human umbilical cord mesenchymal stem cells ameliorate IL-6-induced acute liver injury through miR-455-3p. Stem Cell Res Ther. 2020;11(1):37. [50] JIANG W, TAN Y, CAI M, et al. Human Umbilical Cord MSC-Derived Exosomes Suppress the Development of CCl(4)-Induced Liver Injury through Antioxidant Effect. Stem Cells Int. 2018;2018:6079642. [51] MANSOUR MF, GREISH SM, EL-SERAFI AT, et al. Therapeutic potential of human umbilical cord derived mesenchymal stem cells on rat model of liver fibrosis. Am J Stem Cells. 2019;8(1):7-18. [52] ISMAIL A, HASSAN E, SELEEM MI, et al. Migration of human umbilical cord blood cells into rat liver. Int J Stem Cells. 2010;3(2):154-160. [53] HU C, HE Y, FANG S, et al. Urine-derived stem cells accelerate the recovery of injured mouse hepatic tissue. Am J Transl Res. 2020;12(9): 5131-5150. [54] PENG SY, CHOU CJ, CHENG PJ, et al. Therapeutic potential of amniotic-fluid-derived stem cells on liver fibrosis model in mice. Taiwan J Obstet Gynecol. 2014;53(2):151-157. [55] WANG H, TIAN Y, LI X, et al. Amniotic mesenchymal stem cells derived hepatocyte-like cells attenuated liver fibrosis more efficiently by mixed-cell transplantation. Int J Physiol Pathophysiol Pharmacol. 2020;12(1):11-24. [56] IWANAKA T, YAMAZA T, SONODA S, et al. A model study for the manufacture and validation of clinical-grade deciduous dental pulp stem cells for chronic liver fibrosis treatment. Stem Cell Res Ther. 2020;11(1):134. [57] JUNG J, CHOI JH, LEE Y, et al. Human placenta-derived mesenchymal stem cells promote hepatic regeneration in CCl4 -injured rat liver model via increased autophagic mechanism. Stem Cells. 2013;31(8):1584-1596. [58] XIE K, LIU L, CHEN J, et al. Exosomes derived from human umbilical cord blood mesenchymal stem cells improve hepatic ischemia reperfusion injury via delivering miR-1246. Cell Cycle. 2019;18(24):3491-3501. [59] CHEN L, XIANG B, WANG X, et al. Exosomes derived from human menstrual blood-derived stem cells alleviate fulminant hepatic failure. Stem Cell Res Ther. 2017;8(1):9. [60] HYUN J, WANG S, KIM J, et al. MicroRNA125b-mediated Hedgehog signaling influences liver regeneration by chorionic plate-derived mesenchymal stem cells. Sci Rep. 2015;5:14135. [61] LIN BL, CHEN JF, QIU WH, et al. Allogeneic bone marrow-derived mesenchymal stromal cells for hepatitis B virus-related acute-on-chronic liver failure: A randomized controlled trial. Hepatology. 2017;66(1):209-219. [62] 吕艳杭,吴姗姗,王振常,等.柔肝化纤颗粒联合骨髓间充质干细胞移植术治疗肝硬化失代偿期的临床疗效及其对血清炎性因子水平和免疫功能及氧化应激反应的影响[J].中国全科医学,2021, 24(3):355-362. [63] SHI M, ZHANG Z, XU R, et al. Human mesenchymal stem cell transfusion is safe and improves liver function in acute-on-chronic liver failure patients. Stem Cells Transl Med. 2012;1(10):725-731. [64] ZHOU GP, JIANG YZ, SUN LY, et al. Therapeutic effect and safety of stem cell therapy for chronic liver disease: a systematic review and meta-analysis of randomized controlled trials. Stem Cell Res Ther. 2020;11(1):419. [65] CAI Y, ZOU Z, LIU L, et al. Bone marrow-derived mesenchymal stem cells inhibits hepatocyte apoptosis after acute liver injury. Int J Clin Exp Pathol. 2015;8(1):107-116. [66] 黎娇,朱争艳,杜智,等.人脐带间充质干细胞分泌物对肝细胞增殖和凋亡的影响[J].中华肝胆外科杂志,2010,16(6):460-464. [67] CASILLAS-RAMÍREZ A, ZAOUALI A, PADRISSA-ALTÉS S, et al. Insulin-like growth factor and epidermal growth factor treatment: new approaches to protecting steatotic livers against ischemia-reperfusion injury. Endocrinology. 2009;150(7):3153-3161. [68] YAN Y, XU W, QIAN H, et al. Mesenchymal stem cells from human umbilical cords ameliorate mouse hepatic injury in vivo. Liver Int. 2009;29(3):356-365. [69] JIAO Z, LIU X, MA Y, et al. Adipose-Derived Stem Cells Protect Ischemia-Reperfusion and Partial Hepatectomy by Attenuating Endoplasmic Reticulum Stress. Front Cell Dev Biol. 2020;8:177. [70] WANG Y, WANG JL, MA HC, et al. Mesenchymal stem cells increase heme oxygenase 1-activated autophagy in treatment of acute liver failure. Biochem Biophys Res Commun. 2019;508(3):682-689. [71] WANG R, SHEN Z, YANG L, et al. Protective effects of heme oxygenase-1-transduced bone marrow-derived mesenchymal stem cells on reduced-size liver transplantation: Role of autophagy regulated by the ERK/mTOR signaling pathway. Int J Mol Med. 2017;40(5):1537-1548. [72] ZHANG L, SONG Y, CHEN L, et al. MiR-20a-containing exosomes from umbilical cord mesenchymal stem cells alleviates liver ischemia/reperfusion injury. J Cell Physiol. 2020;235(4):3698-3710. [73] GUO G, ZHUANG X, XU Q, et al. Peripheral infusion of human umbilical cord mesenchymal stem cells rescues acute liver failure lethality in monkeys. Stem Cell Res Ther. 2019;10(1):84. [74] HAGA H, YAN IK, BORRELLI DA, et al. Extracellular vesicles from bone marrow-derived mesenchymal stem cells protect against murine hepatic ischemia/reperfusion injury. Liver Transpl. 2017;23(6):791-803. [75] ZHANG LT, PENG XB, FANG XQ, et al. Human umbilical cord mesenchymal stem cells inhibit proliferation of hepatic stellate cells in vitro. Int J Mol Med. 2018;41(5):2545-2552. [76] OHARA M, OHNISHI S, HOSONO H, et al. Extracellular Vesicles from Amnion-Derived Mesenchymal Stem Cells Ameliorate Hepatic Inflammation and Fibrosis in Rats. Stem Cells Int. 2018;2018:3212643. [77] LI C, JIN Y, WEI S, et al. Hippo Signaling Controls NLR Family Pyrin Domain Containing 3 Activation and Governs Immunoregulation of Mesenchymal Stem Cells in Mouse Liver Injury. Hepatology. 2019; 70(5):1714-1731. [78] LIU Y, LOU G, LI A, et al. AMSC-derived exosomes alleviate lipopolysaccharide/d-galactosamine-induced acute liver failure by miR-17-mediated reduction of TXNIP/NLRP3 inflammasome activation in macrophages. EBioMedicine. 2018;36:140-150. [79] 颜卫红.人脐带间充质干细胞对D-Gal所致慢性肝损伤大鼠线粒体的保护作用[D].济南:山东大学,2017. [80] YAN Y, JIANG W, TAN Y, et al. hucMSC Exosome-Derived GPX1 Is Required for the Recovery of Hepatic Oxidant Injury. Mol Ther. 2017;25(2):465-479. [81] JANG YJ, AN SY, KIM JH. Identification of MFGE8 in mesenchymal stem cell secretome as an anti-fibrotic factor in liver fibrosis. BMB Rep. 2017;50(2): 58-59. [82] XUAN J, FENG W, AN ZT, et al. Anti-TGFbeta-1 receptor inhibitor mediates the efficacy of the human umbilical cord mesenchymal stem cells against liver fibrosis through TGFbeta-1/Smad pathway. Mol Cell Biochem. 2017; 429(1-2):113-122. [83] FATHY M, OKABE M, SAAD ELDIEN HM, et al. AT-MSCs Antifibrotic Activity is Improved by Eugenol through Modulation of TGF-beta/Smad Signaling Pathway in Rats. Molecules. 2020;25(2):348. [84] JUN JH, JUNG J, KIM JY, et al. Upregulation of C-Reactive Protein by Placenta-Derived Mesenchymal Stem Cells Promotes Angiogenesis in A Rat Model with Cirrhotic Liver. Int J Stem Cells. 2020;13(3):404-413. [85] ELKHAFIF N, EL BAZ H, HAMMAM O, et al. CD133(+) human umbilical cord blood stem cells enhance angiogenesis in experimental chronic hepatic fibrosis. APMIS. 2011;119(1):66-75. |
[1] | 朱 婵, 韩栩珂, 姚承佼, 周 倩, 张 强, 陈 秋. 人体唾液成分与骨质疏松/骨量低下[J]. 中国组织工程研究, 2022, 26(9): 1439-1444. |
[2] | 金 涛, 刘 林, 朱晓燕, 史宇悰, 牛建雄, 张同同, 吴树金, 杨青山. 骨关节炎与线粒体异常[J]. 中国组织工程研究, 2022, 26(9): 1452-1458. |
[3] | 张立创, 徐 浩, 马迎辉, 熊梦婷, 韩海慧, 鲍嘉敏, 翟伟韬, 梁倩倩. 免疫调控淋巴回流功能治疗类风湿关节炎的机制及前景[J]. 中国组织工程研究, 2022, 26(9): 1459-1466. |
[4] | 肖 豪, 刘 静, 周 君. 脉冲电磁场治疗绝经后骨质疏松症的研究进展[J]. 中国组织工程研究, 2022, 26(8): 1266-1271. |
[5] | 朱 婵, 韩栩珂, 姚承佼, 张 强, 刘 静, 邵 明. 针刺治疗帕金森病:动物实验显示的作用机制[J]. 中国组织工程研究, 2022, 26(8): 1272-1277. |
[6] | 唐文静, 伍思源, 杨 晨, 陶 希. 炎症反应与卒中后抑郁[J]. 中国组织工程研究, 2022, 26(8): 1278-1285. |
[7] | 王 景, 熊 山, 曹 金, 冯林伟, 王 信. 白细胞介素3在骨代谢中的作用及机制[J]. 中国组织工程研究, 2022, 26(8): 1260-1265. |
[8] | 吴玮玥, 郭晓东, 包崇云. 工程化外泌体在骨修复再生中的应用[J]. 中国组织工程研究, 2022, 26(7): 1102-1106. |
[9] | 周洪琴, 吴丹丹, 杨 琨, 刘 琪. 传递特定miRNA的外泌体可调控成骨并促进成血管[J]. 中国组织工程研究, 2022, 26(7): 1107-1112. |
[10] | 张璟琳, 冷 敏, 朱博恒, 汪 虹. 干细胞源外泌体促进糖尿病创面愈合的机制及应用[J]. 中国组织工程研究, 2022, 26(7): 1113-1118. |
[11] | 黄晨玮, 费彦亢, 朱梦梅, 李鹏昊, 于 兵. 谷胱甘肽在干细胞“干性”及调控中的重要作用[J]. 中国组织工程研究, 2022, 26(7): 1119-1124. |
[12] | 惠小珊, 白 京, 周思远, 王 阶, 张金生, 何庆勇, 孟培培. 中医药调控干细胞诱导分化的理论机制[J]. 中国组织工程研究, 2022, 26(7): 1125-1129. |
[13] | 安维政, 何 萧, 任 帅, 刘建宇. 肌源干细胞在周围神经再生中的潜力[J]. 中国组织工程研究, 2022, 26(7): 1130-1136. |
[14] | 范一鸣, 刘方煜, 张洪宇, 李 帅, 王岩松. 脊髓损伤后室管膜区内源性神经干细胞反应的系列问题[J]. 中国组织工程研究, 2022, 26(7): 1137-1142. |
[15] | 轩娟娟, 白鸿太, 张继翔, 王耀权, 陈国勇, 魏思东. 调节性T细胞亚群在肝移植中的作用及临床应用进展[J]. 中国组织工程研究, 2022, 26(7): 1143-1148. |
文题释义:
外泌体:是直径为30-150 nm的脂质双层结构囊泡,几乎所有类型的细胞都能分泌,含有DNA、RNA、mRNA、miRNA、蛋白质等,在细胞间信号传递中起着重要的作用。外泌体在介导细胞间信息传递、产生免疫耐受及组织修复再生等方面发挥作用。
肝再生:包括肝实质细胞再生和肝组织结构重建,肝细胞在再生中起重要作用,多种细胞因子和生长因子通过不同机制对其进行调控。
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
间充质干细胞移植体内后迁移到受损的肝脏发生定向分化并通过外泌体传递关键的细胞因子,通过抗凋亡、促增殖、抗纤维化、抗炎、调节免疫、抗氧化、促进血管生成和调节自噬等机制发挥肝脏保护作用并延缓疾病进展。间充质干细胞从最初的发现到现在逐渐应用于临床疾病的治疗,经历了漫长科研探索和治疗方案、方法创新的过程。探索其内在的机制是揭开干细胞治疗奥秘、促使其应用于临床的必要途径。虽然间充质干细胞治疗肝损伤的临床试验已逐步开展,但诸多细节仍需要在试验中进一步完善和摸索。相信不久的将来,通过科研工作者和临床医生的不懈努力,应用间充质干细胞治疗肝损伤将为患者带来康复的希望。
中国组织工程研究杂志出版内容重点:干细胞;骨髓干细胞;造血干细胞;脂肪干细胞;肿瘤干细胞;胚胎干细胞;脐带脐血干细胞;干细胞诱导;干细胞分化;组织工程
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||