[1]Ahmed TA, Hincke MT. Strategies for articular cartilage lesion repair and functional restoration. Tissue Eng Part B Rev. 2010; 16(3):305-329.
[2]Peretti GM, Pozzi A, Ballis R, et al. Current surgical options for articular cartilage repair. Acta Neurochir Suppl. 2011;108: 213-219.
[3]巩清波.关节软骨的损伤及其修复现状[J].中国组织工程研究与临床康复,2010,14(24):4491-4494.
[4]Stoltz JF, Huselstein C, Schiavi J, et al. Human stem cells and articular cartilage tissue engineering. Curr Pharm Biotechnol. 2012;13(15):2682-2691.
[5]Fini M, Pagani S, Giavaresi G, et al. Functional tissue engineering in articular cartilage repair: is there a role for electromagnetic biophysical stimulation. Tissue Eng Part B Rev. 2013;19(4):353-367.
[6]Johnstone B, Alini M, Cucchiarini M, et al. Tissue engineering for articular cartilage repair--the state of the art. Eur Cell Mater. 2013;25:248-267.
[7]Muhammad H, Schminke B, Miosge N. Current concepts in stem cell therapy for articular cartilage repair. Expert Opin Biol Ther. 2013;13(4):541-548.
[8]赖建明,林建华.基因修饰骨髓间充质干细胞修复关节软骨损伤[J].中国组织工程研究,2013,(6):1107-1110.
[9]罗文,范建楠,叶川.软骨组织工程学方法修复关节软骨缺损[J].中国组织工程研究,2012,16(37):7009-7014.
[10]程越,田京.纳米支架与关节软骨重建[J].中国组织工程研究, 2012, 16(12):2265-2269.
[11]Luo W, Fan J, Ye C. Proliferation and chondrogenic differentiation of precartilaginous stem cells in self-assembling peptide nanofiber scaffolds. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2012;26(12):1505-1511.
[12]You H, Chen A, Liu T, et al. Construction of eukaryotic expression plasmid of hTGF-beta3 and its inducing effect on differentiation of precartilaginous stem cells into chondroblasts. J Huazhong Univ Sci Technolog Med Sci. 2011;31(4):524-529.
[13]赵友,尹航,王昌兴,等.骨骺干细胞研究现状[J].中华中医药学刊, 2012,(2):346-348.
[14]Pan YS, Ding GX, Wang J. Research on repair strategies for articular cartilage defects. Zhongguo Gu Shang. 2013;26(2): 175-178.
[15]Akiyama H. Transcriptional regulation in chondrogenesis by Sox-9. Clin Calcium. 2011;21(6):845-851.
[16]Tew SR, Clegg PD. Analysis of post transcriptional regulation of SOX-9 mRNA during in vitro chondrogenesis. Tissue Eng Part A. 2011;17(13-14):1801-1807.
[17]Chen S, Tao J, Bae Y, et al. Notch gain of function inhibits chondrocyte differentiation via Rbpj-dependent suppression of Sox-9. J Bone Miner Res. 2013;28(3): 649-659.
[18]Sugimoto Y, Takimoto A, Akiyama H, et al. Scx+/Sox-9+ progenitors contribute to the establishment of the junction between cartilage and tendon/ligament. Development. 2013; 140(11):2280-2288.
[19]Cao L, Yang F, Liu G, et al. The promotion of cartilage defect repair using adenovirus mediated Sox-9 gene transfer of rabbit bone marrow mesenchymal stem cells. Biomaterials. 2011;32(16):3910-3920.
[20]The Ministry of Science and Technology of the People’s Republic of China. Guidance Suggestions for the Care and Use of Laboratory Animals. 2006-09-30.
[21]张衣北,陈安民,郭风劲,等.骨骺干细胞的体外培养及生长特性[J].中国康复,2006;21(1):3-5.
[22]游洪波,程浩.免疫磁性细胞分选技术分离纯化新生大鼠骨骺前软骨干细胞[J].中华创伤杂志,2004,20(10):33-35.
[23]Hu WH, Guo FJ, Li F, et al. Construction of Sox-9 gene eukaryotic expression vector and its inductive effects on directed differentiation of bone marrow stromal cells into precartilaginous stem cells in rats. J Huazhong Univ Sci Technolog Med Sci. 2009;(3):291-295.
[24]Hunziker EB, Rosenberg LC. Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg Am. 1996;78(5):721-733.
[25]Gobbi A, Kon E, Berruto M, et al. Patellofemoral full-thickness chondral defects treated with second-generation autologous chondrocyte implantation: results at 5 years' follow-up. Am J Sports Med. 2009;37(6):1083-1092.
[26]Hamanishi M, Nakasa T, Kamei N, et al. Treatment of cartilage defects by subchondral drilling combined with covering with atelocollagen membrane induces osteogenesis in a rat model. J Orthop Sci. 2013;19(4):353-367.
[27]Gao SJ, Wei JC, Lu B, et al. Experimental research on repairing full-thickness articular cartilage defects by transplantation of autologous uncultured bone-marrow- derived mononuclear cells in combination with micro-fracture. Zhonghua Yi Xue Za Zhi. 2012;92(35):2463-2467.
[28]Chahal J, Gross AE, Gross C, et al. Outcomes of osteochondral allograft transplantation in the knee. Arthroscopy. 2013;29(3):575-588.
[29]Zhang L, Hu J, Athanasiou KA. The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng. 2009;37(1-2):1-57.
[30]Guilak F, Butler DL, Goldstein SA. Functional tissue engineering: the role of biomechanics in articular cartilage repair. Clin Orthop Relat Res. 2001;(391 Suppl):S295-S305.
[31]El Sayed K, Marzahn U, John T, et al. PGA-associated heterotopic chondrocyte cocultures: implications of nasoseptal and auricular chondrocytes in articular cartilage repair. J Tissue Eng Regen Med. 2013;7(1):61-72.
[32]Singh M, Sandhu B, Scurto A, et al. Microsphere-based scaffolds for cartilage tissue engineering: using subcritical CO(2) as a sintering agent. Acta Biomater. 2010;6(1):137-143.
[33]Raub CB, Hsu SC, Chan EF, et al. Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer. Osteoarthritis Cartilage. 2013;21(6):860- 868.
[34]Zhao Q, Wang S, Tian J, et al. Combination of bone marrow concentrate and PGA scaffolds enhance bone marrow stimulation in rabbit articular cartilage repair. J Mater Sci Mater Med. 2013;24(3):793-801.
[35]Leijten JC, Georgi N, Wu L, et al. Cell sources for articular cartilage repair strategies: shifting from monocultures to cocultures. Tissue Eng Part B Rev. 2013;19(1):31-40.
[36]Kamei G, Kobayashi T, Ohkawa S, et al. Articular cartilage repair with magnetic mesenchymal stem cells. Am J Sports Med. 2013;41(6):1255-1264.
[37]Robinson D, Hasharoni A, Cohen N, et al. Fibroblast growth factor receptor-3 as a marker for precartilaginous stem cells. Clin Orthop Relat Res. 1999;(367 Suppl):S163-175.
[38]Cheng H, Chen AM , You HB. immunomagnetic indirect positive sorting of precartilaginous stem cells from neonatal rat. Huazhong Keji Daxue Xuebao (Yixue Yingdewen Ban). 2006;(6):723-724.
[39]丁然,张勇,游洪波,等.人转化生长因子β3基因转染KLD-12自组装纳米肽纤维支架三维培养前软骨干细胞[J].中国组织工程研究与临床康复,2010,14(29):5339-5343.
[40]You HB, Chen AM, Liu T, et al. Construction of eukaryotic expression plasmid of htgf-β3 and its inducing effect on differentiation of precartilaginous stem cells into chondroblasts. J Huazhong Univ Sci Technolog Med Sci. 2011;31(4):524-529.
[41]You HB. Chondrogenesis of precartilaginous stem cells in KLD-12 self-assembling peptide nanofiber scaffold loading TGF-β3 gene. Wuhan Ligong Daxue Xuebao:Cailiao Kexueban. 2011;(4):634-640.
[42]胡伟华,郭风劲,陈安民,等.新生大鼠前软骨干细胞株的体外培养分选、鉴定及永生化研究(英文)[J].中国组织工程研究与临床康复,2008,12(43):8588-8592.
[43]张衣北,陈安民,郭风劲,等.Notch1信号系统对骨骺干细胞增殖与分化调控作用的初步观察[J].中华医学杂志,2005,85(48): 3430-3434.
[44]周治国,李丽,郭风劲.甲状旁腺相关肽调控骨骺干细胞后的stathmin表达[J].生物骨科材料与临床研究,2010,7(1):10- 15.
[45]赵守军,熊文化,郭宁峰.乏氧环境下骨骺干细胞株在软骨载体中的相容性、增殖和分化成软骨的实验研究[J].现代实用医学, 2012,24(4):375-377.
[46]Kupcsik L, Stoddart MJ, Li Z, et al. Improving chondrogenesis: potential and limitations of SOX-9 gene transfer and mechanical stimulation for cartilage tissue engineering. Tissue Eng Part A. 2010;16(6):1845-1855.
[47]Hattori T, Muller C, Gebhard S, et al. SOX-9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification. Development. 2010; 137(6):901-911.
[48]Nakamura Y, He X, Kato H, et al. Sox-9 is upstream of microRNA-140 in cartilage. Appl Biochem Biotechnol. 2012; 166(1):64-71.
[49]Martinez-Sanchez A, Dudek KA, Murphy CL. Regulation of human chondrocyte function through direct inhibition of cartilage master regulator SOX-9 by microRNA-145 (miRNA-145). J Biol Chem. 2012;287(2):916-924.
[50]Park J, Zhang JJ, Moro A, et al. Regulation of Sox-9 by Sonic Hedgehog (Shh) is essential for patterning and formation of tracheal cartilage. Dev Dyn. 2010;239(2):514-526.
[51]Fanburg-Smith JC, Auerbach A, Marwaha JS, et al. Reappraisal of mesenchymal chondrosarcoma: novel morphologic observations of the hyaline cartilage and endochondral ossification and beta-catenin, Sox-9, and osteocalcin immunostaining of 22 cases. Hum Pathol. 2010; 41(5):653-662.
[52]Cucchiarini M, Terwilliger EF, Kohn D, et al. Remodelling of human osteoarthritic cartilage by FGF-2, alone or combined with Sox9 via rAAV gene transfer. J Cell Mol Med. 2009; 13(8B): 2476-2488.
[53]张伟凯,陈安民,郭风劲,等.大鼠骨骺干细胞免疫纯化和Sox-9基因真核表达载体的克隆构建[J].中国组织工程研究与临床康复,2008,12(12):2321-2325.
[54]张树威,金伟,祝少博,等.甲状旁腺素相关蛋白亚基因对骨骺干细胞的调控[J].中国组织工程研究,2013,17(10):1814-1820.
[55]Cucchiarini M, Orth P, Madry H. Direct rAAV SOX-9 administration for durable articular cartilage repair with delayed terminal differentiation and hypertrophy in vivo. J Mol Med (Berl). 2013;91(5):625-636. |